Listed below are evaluation measures (in bold typeface) that the RTA applied to “detailed” options in Spring 2007. Within each option, the measures are applied only to the proposed major capital investments and to the express bus and commuter rail network presented in Radial Reliant Option 3. The evaluation measures are intended to help determine how well each Option addresses approved Goals and Objectives for corridor mobility improvements, as well as the relative strengths and weaknesses of each. All of the measures are considered equal in weight; no weighting scheme has been applied.

Some of the measures proved to be unusable in the Options Feasibility study, due to lack of data or required detail. Those measures that have not yet been applied are reserved for application to any and all options recommended for further study in future study efforts. Such future study efforts are anticipated to include: the Systems Alternatives Analysis (SAA), the Community Development and Land Use (CDLU) study, Design, or through an Environmental Assessment/Environmental Impact Statement (AE/EIS).

Goal No. 1: Increase Availability and Efficiency of Transit for Reverse Commuters to Major Suburban Employment Centers

Objective 1.1: Increase transit access to identified corridor employment centers for current and future Reverse commuters.

Measure 1.1.1: Number of current jobs within the identified Corridor employment centers that are within ½ mile radius of a transit stop / station for service which supports the reverse commute.

Utilizing GIS, enumerate the number of current jobs within ½ mile of major capital project transit stops or stations serving identified corridor employment centers for all commuters. Employment within ½ mile of a designated employment center station not within the employment center geography gets counted as employment center jobs. Data source: NIPC quarter section data, 2000 employment estimate.

Measure 1.1.2: Number of future jobs within the identified corridor employment centers that are within ½ mile radius of a transit stop / station for service which supports the reverse commute.

Utilizing GIS, enumerate the number of future jobs within ½ mile of major capital project transit stops or stations serving identified corridor employment centers for all commuters. Employment within ½ mile of a designated employment center station not within the employment center geography gets counted as employment center jobs. Data source: NIPC quarter section data, 2030 employment projection.

Objective 1.2: Increase access to additional potential places of employment.

Measure 1.2.1: Number of current jobs not within the identified Corridor employment centers within ½ mile radius of a transit stop / station for service which supports the reverse commute, west of Cicero Ave.

Utilizing GIS, enumerate the number of current jobs within ½ mile of major capital project transit stops or stations located outside of the identified corridor employment centers. In the rare instance where jobs occur within ½ mile of a non-employment center station that are within the employment center geography, they
are counted as non-employment center jobs. Data source: NIPC quarter section data, 2000 employment estimate.

Objective 1.3: Increase connectivity between employment centers and residential locations of significant existing and future origin density.

Measure 1.3.1: Sum of existing and future work trip origins that connect with the identified Corridor employment centers for reverse commuters.

Utilizing GIS, sum all current and future commute origins within 1-mile area on either side of the currently assumed alignment of the major capital projects with destinations within the six identified corridor employment centers. Data source: CATS Travel Model Data (2007 & 2030).

Objective 1.4: Increase opportunity to serve multiple or overlapping Corridor travel markets.

Measure 1.4.1: Sum of 2007 and 2030 work trip origins east of the corridor’s eastern boundary (IL 50) and destinations within ½ mile of a transit stop/station on a proposed transit option for reverse commuters.

Sum all current and future work trips with origins east of Cicero Avenue (IL 50) and destinations within ½ mile of a transit stop/station on a proposed major capital project. Data source: CATS Travel Model Data (2007 & 2030).

Objective 1.5: Increase opportunity to serve other work-related and non-work trips.

Measure 1.5.1: Sum of 2007 and 2030 non-work trips with origins east of the corridor’s eastern boundary (IL 50) and destinations within ½ mile of transit stop/station on a proposed transit option.

Sum all current and future non-work trips with origins east of Cicero Avenue (IL 50) and destinations within ½ mile of a transit stop/station on a proposed major capital project. Data source: CATS Travel Model Data (2007 & 2030).

Objective 1.6: Increase benefit to users of existing multimodal transportation system.

Measure 1.6.1: Extent of improvement in travel time, etc. for other users of system element affected by proposed option.

Requires modeling in Systems Alternatives Analysis.

Objective 1.7: Reduce the number of transfers.

Measure 1.7.1: Potential for interoperability of services to provide one-seat ride (no transfers) for reverse commuters to multiple employment centers.

Major capital projects (especially mode and alignment) ability to provide a one seat ride for reverse commuters to identified corridor employment centers is assessed visually.

Goal No. 2: Increase Availability and Efficiency of Transit for Intersuburban Commuters to Major Suburban Employment Centers

Objective 2.1: Increase transit access to identified Corridor employment centers for current and future commuters of Intersuburban travel markets.

Measure 2.1.1: Number of current jobs within the identified Corridor employment centers that are within ½ mile radius of a transit stop / station for service which supports the intersuburban commute.
Utilizing GIS analysis, enumerate the number of current jobs within 1/2 mile of major capital project transit stops/stations serving identified corridor employment centers for all commuters. Employment within 1/2 mile of a designated employment center station not within the employment center geography gets counted as employment center jobs. Data source: NIPC quarter section data, 2000 employment estimate.

Measure 2.1.2: Number of future jobs within the identified Corridor employment centers that are within 1/2 mile radius of a transit stop / station for service which supports the intersuburban commute.

Utilizing GIS analysis, enumerate the number of future jobs within 1/2 mile of major capital project transit stops/stations serving identified corridor employment centers for all commuters. Employment within 1/2 mile of a designated employment center station not within the employment center geography gets counted as employment center jobs. Data source: NIPC quarter section data, 2030 employment projection.

Objective 2.2: Increase access to additional potential places of employment

Measure 2.2.1: Number of current jobs not within the identified Corridor employment centers within 1/2 mile radius of a transit stop / station for service which supports the intersuburban commute.

Utilizing GIS analysis, enumerate the number of current jobs within 1/2 mile of major capital project transit stops/stations located outside of the identified corridor employment centers. In the rare instance where jobs occur within 1/2 mile of a non-employment center station that are within the employment center geography, they are counted as non-employment center jobs. Data source: NIPC quarter section data, 2000 employment estimate.

Objective 2.3: Increase connectivity between employment centers and residential locations of significant existing and future origin density.

Measure 2.3.1: Sum of existing and future work trip origins served that connect with the identified Corridor employment centers for intersuburban commuters.

Utilizing GIS analysis, sum all current and future commute origins within 1-mile area on either side of the currently assumed alignment of the major capital projects with destinations within the six identified corridor employment centers. Data source: CATS Travel Model Data (2007 & 2030).

Objective 2.4: Increase opportunity to serve multiple or overlapping Corridor travel markets.

Measure 2.4.1: Sum of 2007 and 2030 work trips in identified travel markets with origins and destinations within 1/2 mile of a transit/stop station on a proposed transit option for intersuburban commuters.

Sum all current and future work trips with both origins and destinations within 1/2 mile of a transit stop/station on a major capital project. Data source: CATS Travel Model Data (2007 & 2030).

Objective 2.5: Increase opportunity to serve other work-related and non-work trips.

Measure 2.5.1: Sum of 2007 and 2030 non-work trips with origins and destinations within 1/2 mile of a transit stop/station on a proposed transit option.
Sum all current and future non-work trips with both origins and destinations within ½ mile of a transit stop/station on a major capital project. Data source: CATS Travel Model Data (2007 & 2030).

Objective 2.6: Increase benefit to users of existing multimodal transportation system.

Measure 2.6.1: Extent of improvement in travel time, etc. for other users of system element affected by proposed option.
Requires modeling in a Systems Alternative Analysis.

Objective 2.7: Reduce the number of transfers.

Measure 2.7.1: Potential for interoperability of services to provide one-seat ride (no transfers) for intersuburban commuters to multiple employment centers.
The major capital projects (especially mode and alignment) ability to provide a one seat ride for intersuburban commuters to identified corridor employment centers is assessed visually.

Goal No. 3: Improve Roadway and Transit Service Quality in I-290 Travel Corridor

Objective 3.1: Reduce travel times on I-290 (eastbound and westbound) for auto and transit users.
For measures under this objective, a subjective (qualitative) evaluation approach is utilized. This methodology includes performance measures generating a relative response of “Good,” “Moderate” or “Poor” as a function of increased capacity provided for either transit or highway travel in the I-290 corridor.

Measure 3.1.1: Extent option improves travel efficiency on I-290 for eastbound automobile travel in the AM peak.
Identify the additional capacity on I-290 provided by each option. Managed lane/HOV for the full extent from Cicero Avenue to Hillside = "Good". Managed lane/HOV for partial extent from Cicero Avenue to Hillside = "Moderate". No managed lane/HOV = "Poor".

Measure 3.1.2: Extent option improves travel efficiency on I-290 for westbound automobile travel in the AM peak.
Identify the additional capacity on I-290 provided by each option. Managed lane/HOV for the full extent from Cicero Avenue to Hillside = "Good". Managed lane/HOV for partial extent from Cicero Avenue to Hillside = "Moderate". No managed lane = "Poor".

Measure 3.1.3: Extent option improves travel efficiency on I-290 for eastbound for transit users in the AM peak.
Increase in non-SOV capacity provided through extension of rail, construction of HOV lanes, and other regional transit service frequency improvements. Transit on exclusive guideway = "Good". Transit on multimodal/shared use lane = "Moderate". Transit on general purpose lane/shoulder = "Poor".

Measure 3.1.4: Extent option improves travel efficiency on I-290 for westbound for transit users in the AM peak.
Increase in non-SOV capacity provided through extension of rail, construction of HOV lanes, and other regional transit service frequency improvements. Transit on exclusive guideway = "Good". Transit on multimodal/shared use lane = "Moderate". Transit on general purpose lane/shoulder = "Poor".

Objective 3.2: Reduce travel times on other key transportation system elements (facilities and services) relied upon by Intersuburban and Reverse commuters.

Measure 3.2.1: Extent option improves travel time on existing arterials, expressways, bus services and rail services identified in the Travel Market Analysis as key system elements in the I-290 travel corridor.

Identify capacity enhancements provided to other key system elements serving the I-290 travel corridor as defined in the Cook DuPage Corridor Travel Market Analysis. Requires Systems Alternative Analysis.

Measure 3.2.2: Extent to which option provides an alternative routing that diverts transit and auto travelers from congested links in the home to work path now available.

Determine the cumulative number of congestion "hot spots" (defined by utilizing CATS model data, V/C ratios, etc.) avoided. Requires Systems Alternative Analysis.

Objective 3.3: Reduce adverse impacts on users of the existing multimodal transportation system.

Measure 3.3.1: Extent of users whose travel experience may be degraded as a result of the proposed option.

Reduction in existing capacity and/or introduction of additional delay brought about by the implementation of a given option. Introductions of delay may be those caused by an additional at grade rail crossing; the taking of a parking lane or a travel lane; or other actions, which similarly constitute an adverse impact on transportation system users. Requires Systems Alternative Analysis.

Objective 3.4: Reduce travel times for multi-modal/multi-vehicle trips.

Measure 3.4.1: Reduction in number of forced intermodal plus intramodal transfers for travelers using the I-290 travel corridor.

Quantify the number of total transfers required; stratify this total into intermodal transfers verses intramodal transfers. Requires Systems Alternative Analysis.

Objective 3.5: Increase use of traffic/transportation management techniques and technology strategies.

Measure 3.5.1: Number of instances where Transportation System Management (TSM) is utilized to improve the I-290 travel corridor flow.

Enumerate option elements, which employ transportation system management (as opposed to major capital construction) as the technique for travel time improvement. Requires Systems Alternative Analysis.

Objective 3.6: Improve travel experience and safety of transportation system users.

Measure 3.6.1: Extent option improves comfort, convenience, safety and reliability for users.

Extent to which the option provides additional corridor capacity as an alternative to SOV congested travel. This measure will be treated qualitatively based on: (a) capacity analysis computations; (b) review of existing system planning,
environmental, and/or engineering documents; and, (c) field reconnaissance. Requires Systems Alternative Analysis.

Goal No. 4: Increase Community and Corridor Benefits

Objective 4.1: Reduce adverse impacts on and promote positive benefits to existing communities, neighborhoods and people.

Measure 4.1.1: Minimize extent of new or further division of well-defined communities or neighborhoods.
This measure will be treated qualitatively based on an analysis of aerial photography/mapping, community comprehensive plans, and designated neighborhood plans, and on field reconnaissance. Note: All major capital projects within each option are currently proposed along existing railroad and/or highway right-of-way, and therefore create minimal adverse impacts to communities or neighborhoods. In the Options Feasibility study, only the I-290 HOV was considered to potentially adversely affect community cohesion – specifically in Oak Park, based on potential need to acquire additional right-of-way.

Measure 4.1.2: Extent and severity of incidences where access to and/or circulation within a community or neighborhood are degraded.
This measure will be treated qualitatively based on an analysis of aerial photography/mapping, community comprehensive plans, and designated neighborhood plans and on field reconnaissance. Requires Community Development and Land Use study.

Measure 4.1.3: Extent and number of businesses or community facilities dislocated or rendered less accessible.
This measure will be treated qualitatively based on an analysis of aerial photography/mapping, community comprehensive plans, and designated neighborhood plans and on field reconnaissance. Requires Community Development and Land Use study.

Measure 4.1.4: Extent and number of residences dislocated or rendered less accessible.
This measure will be treated qualitatively based on an analysis of aerial photography/mapping, community comprehensive plans, and designated neighborhood plans, and on field reconnaissance. Requires Community Development and Land Use study.

Measure 4.1.5: Number of at grade rail crossings added.
Measure to be qualitatively assessed as a function of aggregate delay and aggregate accident exposure (as well as number of rail grade crossings) on each option. Requires design.

Objective 4.2: Enhance economic development / redevelopment opportunities.

Measure 4.2.1: Area of brownfields sites within ½ mile of a major capital project (transit or highway).
Utilizing GIS analysis, enumerate the acreage of Brownfield sites within ½ mile of an option’s major capital projects, and the express bus/commuter rail network in Radial Reliant Option 3. Requires Community Development and Land Use study.
Measure 4.2.2: Area of existing and proposed employment centers within ½ mile of a transit stop / station or point-of-access to a new or improved roadway.

Utilizing GIS analysis, enumerate the acreage of employment centers within ½ mile of a transit stop/station on a major capital project. Data source: Employment center geography as defined by American Consulting Engineers.

Measure 4.2.3: Number of targeted redevelopment sites accessed.

Number of redevelopment sites within ½ mile of a transit stop or station, or the point of access to a roadway improvement. Requires Community Development and Land Use study.

Measure 4.2.4: Number of centers of projected new development accessed.

Number of new development sites within ½ mile of a transit stop or station, or the point of access to a roadway improvement. Requires Community Development and Land Use study.

Objective 4.3: Consider extent of and minimize adverse impacts of land acquisition.

Measure 4.3.1: Classification of land impacted and area of new right-of-way required (includes related parking, roadway, and traffic improvements).

Utilizing GIS analysis, total area of new right-of-way required will be accumulated by major land use classifications and the total across all classifications recorded. Requires design.

Objective 4.4: Maximize achievement of Corridor Planning Standards.

Measure 4.4.1: Number of households within ½ mile radius of a transit stop/station matched to suitable employment opportunities based on level of education needed.

Utilizing GIS analysis of U.S. Census Transportation Planning Package (CTPP) data occurring in the half mile radii of transit stops/stations, matching the number of households by highest level of educational attainment consolidated into three levels (high school or less, some college or associate’s degree, or bachelor’s degree or higher) with employment opportunities present, classified by skill and education requirements of the same three levels. Additional processing of the CTPP occupation data was undertaken by comparing it to US Bureau of Labor Statistics information concerning the required educational levels of the same occupations listed in the CTPP, in order to derive the job levels by census tract. Additional details of the methodology for this measure are contained in Chicago Area Workforce Spatial Analysis: Using GIS to Analyze Workforce Supply and Demand, Lindsay Banks, December 2004. Data source: U.S. Census Transportation Planning Package (CTPP) data

Measure 4.4.2: Promote seamless mode choice.

This is a qualitative/composite assessment of whether an option: (1) incorporates improvements for more than one mode of travel (auto, bus, commuter rail, rapid transit), (2) provides efficient connections between modes, (3) provides for the entire trip, and (4) includes adequate integration amenities.

Measure 4.4.3: Provide new or improved flexibility and efficiency of trips beyond traditional work hours.
This is qualitative/composite assessment of an option’s: (1) weekend/Saturday service, (2) midday service, (3) evening service, (4) 2nd/3rd shift service, (5) expanded evening service. Main Line option 2 which includes a Blue Line extension to Oak Brook was rated “Good” because of CTA’s level and span of service. Options that relied on the commuter rail network (Main Line 4, Radial Reliant 2, 3) were rated poor – again based on frequency and span of service. All other options were rated moderate.

Goal No. 5: Increase Regional Benefits

Objective 5.1: Increase use of and integration with regional transportation system.

Measure 5.1.1: Extent of interconnectivity of option with all other elements of existing transportation systems for all travel markets.

This measure will be based on a visual assessment of the existing use of, and interconnectivity of the interstate system, major roadways, and regional rail system with each option. High level of connectivity of all options with CTA and Pace buses results in bus interconnectivity not constituting a valid discriminate among the options. A qualitative evaluation approach will be utilized. This methodology includes performance measures generating a relative response of “Good,” “Moderate” or “Poor.” Data source: GIS layers (provided by RTA) of Expressways, Major Roadways, Metra commuter rail, and CTA rapid transit.

Measure 5.1.2: Total number of persons within a ½ mile radius of a transit stop/station or point-of-access to a new or improved roadway.

Utilizing GIS analysis, enumerate the number of persons within ½ mile of a transit stop or station on a major capital project. Data source: US Census Bureau, 2000 Census Tract Data.

Objective 5.2: Ensure consistency with regional goals presented in the 2030 RTP and 2040 Regional Framework Plan.

Measure 5.2.1: Total number of 2030 RTP and 2040 Regional Framework Plan goals consistent with option.

Enumerate the apparent number of consistencies with respect to goals statements in the CATS 2030 Regional Transportation Plan (adopted October 2003) and NIPC 2040 Regional Framework Plan. The 2030 RTP has 3 Goals and 92 Objectives, the 2040 Regional Framework Plan has 53 goal categories reduced to five general themes. The goals and objectives in both source documents map well onto the mobility goals and objectives for the Cook-DuPage Corridor. Therefore, for the purpose of this measure evaluation the three (3) 2030 RTP goals and five (5) 2040 Regional Framework Plan themes are used. Data source: 2030 RTP (Section 1.3, pages 19-31) and 2040 Regional Framework Plan (page 97), goals as presented therein.

Objective 5.3: Reduce negative impacts on environmental justice communities/populations.

Measure 5.3.1: Number of housing units adversely impacted by noise, vibration or visual intrusion.

Number of environmental justice housing impacts will be quantified based on GIS analysis and aerial photography/mapping of environmental justice neighborhoods, and on review of existing planning or environmental documents and by field reconnaissance. Requires design.
Measure 5.3.2: Number of environmental justice Census Tracts within 100 feet of a major capital project’s alignment.

Number of environmental justice neighborhoods or communities (Census Tracts for Options Feasibility Phase) impacted will be quantified based on GIS analysis and aerial photography/mapping of environmental justice neighborhoods, and on review of existing planning or environmental documents and by field reconnaissance. Impacted census tracts are those that fall with 100 feet of either side of a major capital project’s alignment. Environmental Justice Neighborhoods are generally defined as a neighborhood composed predominately of persons of color or a substantial proportion of persons below the poverty line. The averages of both minority and poverty level populations across all census tracts in the study area were computed. Census tracts that contained greater percentages than the averages for either category were designated as environmental justice tracts. Data source: US Census Bureau, 2000 Census Tract Data.

Measure 5.3.3: Number of environmental justice homes or businesses dislocated.

Number of environmental justice homes or businesses dislocated will be quantified based on GIS analysis and aerial photography/mapping of environmental justice neighborhoods, and on review of existing planning and environmental studies, supplemented by field reconnaissance. Requires Community Development and Land Use study.

Objective 5.4: Increase access to disadvantaged communities / populations.

Measure 5.4.1: Number of disadvantaged persons within a ½ mile radius of a transit stop/station or point-of-access to a new or improved roadway.

Using GIS analysis, quantify the number of disadvantaged persons (disabled, minority, or elderly individuals) within ½ mile of a transit stop or station on a major capital project. Data source: US Census Bureau, 2000 Census Tract Data.

Measure 5.4.2: Number of Households with zero vehicles within a ½ mile radius of a transit stop/station or point-of-access to a new or improved roadway.

Using GIS analysis, quantify the number households with zero automobiles within ½ mile radius of a transit stop or station on a major capital project. Data source: US Census Bureau, 2000 Census Tract Data.

Measure 5.4.3: Number of Households at the Poverty level within a ½ mile radius of a transit stop/station or point-of-access to a new or improved roadway.

Using GIS analysis, quantify the number of households with family income below the poverty level within ½ mile radius of a transit stop or station on a major capital project. Data source: US Census Bureau, 2000 Census Tract Data.

Goal No. 6: Reduce Adverse Environmental Impacts

Objective 6.1: Ensure all applicable air quality standards are met.

Measure 6.1.1: Does option improve compliance with current air quality standards?
Number of roadway congestion "hot spots" potentially eliminated or significantly improved. Requires EA/EIS.

Objective 6.2: Avoid / reduce adverse impacts to wetlands, floodplains, and critical habitats.

Measure 6.2.1: Number of wetlands and floodplains within 100 feet of a major capital project’s alignment.

Utilizing GIS analysis, enumerate the acreage of wetlands and floodplains within 100 feet of either side of the currently assumed alignment of the major capital projects. Data source: Federal Emergency Management Agency (FEMA) Q3 digital floodplain data and Illinois Department of Natural Resources 1996 wetland data.

Objective 6.3: Reduce operating noise and vibration levels.

Measure 6.3.1: Number of sensitive receptors (e.g., schools, churches, hospitals) potentially subjected to increased noise and vibration impacts.

Utilizing GIS analysis, enumerate the number of sensitive receptors (e.g., schools, churches, hospitals) within 100 feet of either side of the currently assumed alignment of the major capital projects. Data Source: United States Geological Survey, Environmental Systems Research Institute 2006 data.

Objective 6.4: Avoid / reduce adverse impacts to sensitive land uses, historic properties and open space.

Measure 6.4.1: Parklands and open space within 100 feet of a major capital project’s alignment.

Utilizing GIS analysis, enumerate the acreage of parklands and open space within 100 feet of either side of the currently assumed alignment of the major capital projects. Data source: NIPC 2001 Land Use data.

Measure 6.4.2: Number of national historic landmarks within 100 feet of a major capital project’s alignment.

Utilizing GIS analysis, enumerate the number of national historic landmarks within 100 feet of either side of the currently assumed alignment of the major capital projects. Data source: National Park Service (NPS) National Register of Historic Places (NRHP).

Goal No. 7: Increase Cost Effectiveness

Objective 7.1: Increase system value by balancing costs and benefits.

Measure 7.1.1: Divide option’s effectiveness (as computed in the evaluation matrix for goals 1 thru 6) by the option’s total annual costs (capital + operating --in billions).

To be computed as described in the Draft Evaluation Methodology and Options Evaluation Matrix dated August 24, 2006.

Objective 7.2: Reduce construction costs.

Measure 7.2.1: Total construction costs.

Order of Magnitude program level capital construction and equipment costs. Concept level preliminary capital construction cost estimate includes costs gathered from similar national and local projects for the different modal technologies and then applied to the typical cross section within the limits.
Measure 7.2.2: Annualized construction costs (all modal components)
Based on life cycle costing methods (as suggested by FTA or the sponsoring agency), the annualized construction costs for each option is computed as described in Draft Conceptualized Development of Systemwide Annualization Factors dated March 27, 2007.

Objective 7.3: Reduce long-term operating costs.
Measure 7.3.1: Annual operating costs (all transit components).
Based on the Systems and Options Operating Plans Report (March 2007), and operating cost data available (through RTA; from the modal operating agency; or, based on the national transit database), estimates of annual operating costs are made for proposed new transit services.

Objective 7.4: Increase potential benefits.
Measure 7.4.1: Overall effectiveness (as computed in the evaluation matrix for goals 1 thru 6).
To be computed as described in the Draft Evaluation Methodology and Options Evaluation Matrix dated August 24, 2006. This measure of effectiveness is computed for each of goals 1 through 6 and then aggregated for all six goals.

Objective 7.5: Increase compatibility with and capacity of existing, local, state, and federal funding sources for both capital and operating costs.
Measure 7.5.1: Option’s horizon year cash surplus (through a cash-flow model, which incorporates both capital costs and operating costs with reasonable expectation of revenues from all fund sources).
This is a very generalized cash flow analysis for each option that will consider, on an annual basis, all capital and operating costs as well as all potential revenue sources (local and sales taxes, fare box, State of Illinois, tolls, FTA, etc.). The cash flow analysis is carried out through each year to the planning horizon year. The single number reflective of the level of financial feasibility of each option is the cash surplus (or deficit) which exists at the planning horizon year. This “bottom line” number is inclusive of short term borrowing (such as bond, grant anticipation notes (GANS), or grant anticipation revenue vehicles (GARVEES) and long term financing issued and paid back during the options development horizon which is assumed to be the year 2030 consistent with the horizon year for the build out of the 2030 Regional Transportation Plan. Requires Systems Alternative Analysis.

###