Preliminary Purpose and Need for Corridor Mobility Improvements

Prepared by Regional Transportation Authority
Approved by Cook DuPage Corridor Policy Committee
December 5, 2006
For more information about this document, contact:

Regional Transportation Authority
Planning Department
Project Manager: Michelle Ryan
175 W. Jackson Blvd., Suite 1550
Chicago, IL 60604
(312) 913-3200

www.cook-dupagecorridor.com
www.rtachicago.com
List of Tables

Table 2.1: Corridor Commuter Trains per Day by Metra Line, 2005 12
Table 2.2: Corridor Rapid Transit Level of Service, 2005................................. 14
Table 2.3: 2030 RTP Committed Major Capital Projects 17
Table 2.4: 2030 RTP Major Capital Recommendations 17
Table 5.1: Goals and Objectives for Mobility Options 32
List of Figures

Figure 2.1: Cook DuPage Corridor ... 6
Figure 2.2: Cook DuPage Study Area ... 7
Figure 2.3: Existing Roadway System, 2005 .. 8
Figure 2.4: Existing Transit Service, 2005 ... 11
Figure 2.5: Land Use, 2001 ... 19
Figure 2.6: Population Growth, 2000-2030 ... 21
Figure 2.7: Employment Growth, 2000-2030 ... 22
Figure 3.1: Cook-DuPage Corridor Travel Markets, 2000 23
1.0 Introduction

A well conceived statement of the transportation problems for which potential options are being analyzed is a key early step in the corridor planning process. Although it is specifically required by the National Environmental Policy Act (NEPA) as part of Draft and Final Environmental Impact Statements, a concise direct purpose and need statement can help guide the conduct of any corridor level analysis. Purpose and need establishes the problems that must be addressed, serves as the basis for development of goals and objectives and provides the framework for determining which alternatives should be considered as reasonable options.

The Cook-DuPage Phase II Options Feasibility study will refine selected projects from the 2030 Regional Transportation Plan and develop new conceptual transit and highway options specifically to address the Purpose and Need for mobility improvements in the Cook-DuPage Corridor. The new conceptual options will represent various mode and alignment combinations and varying service strategies that are likely to include: 1) making new use of the existing system; 2) hub and spoke; 3) grid network; and 4) key transit corridors with direct point-to-point express and local service. Potential options will constitute very different ways of accomplishing the same desired results. Complete, options will likely be composed of major capital projects, management and operations improvements and service delivery strategies; will need to meet goals sufficiently well and be defined in enough detail for the public to understand.

This draft preliminary Purpose and Need Statement will provide the basis for consideration of transportation alternatives to improve mobility in the Cook-DuPage Corridor, and for decision making and recommended actions identified in the Options Feasibility Phase that are carried forward for further study. The need identifies and describes underlying corridor mobility problems or deficiencies to be solved and provides supporting facts and analysis. The purpose is made up of a set of one or more goals and quantified, measurable objectives that must be met to a degree that sufficiently fulfills the underlying need.

This purpose and need statement is a statement of a transportation problem based on collective analysis of major travel markets; it is not a statement of Purpose and Need for any proposed action since a specific action has not yet been identified. Nevertheless, this purpose and need statement is specific enough to generate conceptual options that may potentially evolve into specific projects or actions.

It is anticipated that federal actions, federal projects and federal funding will likely be a part of the implementation plan for mobility improvements in the Cook-DuPage Corridor. Accordingly, this Purpose and Need can also serve as the foundation for development of a Statement of Purpose and Need for a specific action for which NEPA review is required. Based on the outcome of the Options Feasibility Study, the Purpose and Need will be revised to reflect resulting proposed actions or Locally Preferred Alternatives.

1.1 Summary of Purpose and Need

The Cook-DuPage Corridor study will identify the need for major mobility improvements in the corridor, and develop and evaluate potential major transportation investments to address stated needs. The overall goal is to find the most effective and desired transportation system improvements for this portion of the Chicago metropolitan area.

The Travel Market Analysis (December 2005) indicates four critical mobility issues of the Cook-DuPage Corridor:
(a) Transit access to major employment centers;
(b) Service quality of I-290 (Eisenhower Expressway);
(c) Service quality of bus transit; and
(d) Service quality of arterials.

The first two issues potentially warrant major capital investment: 1) Improving transit access to major employment centers, and 2) Improving service quality of I-290. The Travel Market Analysis also found that a system-wide approach to addressing traffic flow problems and transit coordination issues is critical to affect a meaningful level of improvement, and that any new Corridor transportation investment proposal should strive to improve (and at a minimum, maintain) the current levels of bus and arterial service quality.

1.1.1 Problem Statement

The problem statement adopted by Corridor Technical and Policy committees on January 26, 2006 is as follows:

A significant increase in population and jobs has occurred in suburban areas of Northeastern Illinois over the past several decades. Major regional employment centers have emerged in and around the Cook-DuPage Corridor, offering new work locations for both city and suburban residents. As a result, both DuPage county and Cook county are currently net importers of workers. Corridor employment growth is anticipated to far outpace population change in the next 30 years.

Suburban growth in population and jobs has brought about a significant change in travel patterns. While the traditional commute from the suburbs to Chicago remains strong, there has been a large increase in intersuburban and reverse commute travel. The existing Corridor transportation system was established to serve the traditional commute to downtown Chicago. The system does not provide a sufficient level of service and/or range of options to address the high growth travel patterns to Corridor employment centers. This deficiency is most acute for reverse and intersuburban travel markets where transit options are limited or non-existent.

1.1.2 Goals

Goals and objectives articulate the desired end-state and are the basis for evaluation measures that assess how well potential transportation system improvement options address corridor mobility needs. The following seven goals will serve as direction setting principles for the development and evaluation of transportation options, and will be taken collectively in the development and consideration of options.

1. Increase Availability and Efficiency of Transit for Reverse Commuters to Major Suburban Employment Centers;
2. Increase Availability and Efficiency of Transit for Intersuburban Commuters to Major Suburban Employment Centers;
3. Improve Highway and Transit Service Quality in I-290 Travel Corridor;
4. Increase Community and Corridor Benefits;
5. Increase Regional Benefits;
6. Reduce Adverse Environmental Impacts; and
7. Increase Cost Effectiveness.

1.2 Background

The Regional Transportation Authority (RTA) is undertaking the Cook-DuPage Corridor Study in partnership with the Illinois Department of Transportation to examine potential major transportation system improvements to address the mobility needs in Chicago’s west side and the western suburbs of the Chicago metropolitan area. The travel needs of the Corridor are of a magnitude that potentially warrants a major transportation improvement(s) (capital projects over $100 million); as such, the Cook DuPage Corridor study is being undertaken consistent with Major Investment Study and Federal Transit Administration New Starts requirements.

The Cook-DuPage Corridor is recommended for multi-modal analysis in the region’s 2030 Regional Transportation Plan (RTP) adopted by the Chicago Area Transportation Study Policy Committee in October 2003. The plan includes a number of proposed projects in Chicago’s west side and the western suburbs, including rapid transit and commuter rail upgrades and extensions, new commuter rail and bus rapid transit lines, and additional lanes on interstate highways. Some of these projects are authorized for preliminary engineering in the Safe, Accountable, Flexible, Efficient Transportation Equity Act: A Legacy for Users (SAFETEA-LU). The goal of the Cook-DuPage Corridor Study is to identify the most effective and desired transportation investments to improve mobility in this heavily traveled portion of the Chicago metropolitan region.

The Cook-DuPage Corridor Travel Market Analysis (TMA), the first phase in the RTA’s corridor planning process describes existing conditions and expected future trends in the corridor for demographics, employment, and transportation services and usage. It also identifies the most significant and regular travel patterns for which the transportation system is not currently providing a sufficient level of service and/or range of mobility options; and for which a significant investment in the transportation system may be warranted to improve mobility of the affected travelers. Nine distinct travel markets were identified and evaluated among Traditional, Reverse and Inter-suburban commute categories. The Travel Market Analysis study phase, completed in December 2005 identifies the major mobility issues impacting the corridor:

(a) Transit access to major employment centers;
(b) Service quality of I-290 (Eisenhower Expressway);
(c) Service quality of bus service; and
(d) Service quality of arterials.

The first two warrant potentially major capital investment. The other two may warrant capital investment, although not likely major capital investments, as they fall more into the category of service operations and system management issues. The four mobility problems are all very important and are interrelated. While the Cook-DuPage Corridor study will keep the first two as its focus, solutions for the first two should strive to help and definitely not hinder the other two.

Based on the results of the Travel Market Analysis and reaction from local stakeholders, the RTA is proceeding to Phase II of the Cook-DuPage Corridor Study – Options Feasibility. Phase II will define and screen on a high level a comprehensive list of multi-modal options.
that will serve the intersuburban and reverse commute travel markets; and respond to the major mobility needs identified in the Travel Market Analysis. New potential projects generated as part of this Options Feasibility study to meet identified corridor mobility needs, as well as several RTP project proposals, will be considered. This phase will produce a small set of options that are capable of achieving technical and policy objectives for further analysis.

By undertaking the Cook-DuPage Corridor Phase II Options Feasibility Study the RTA is establishing outline parameters for subsequent alternatives analysis, NEPA documentation, preliminary engineering, project funding and implementation.

1.3 Relationship to Regional and Local Transportation Plans

Responsibility for maintaining, improving, and expanding highway and transit infrastructure is shared by many entities. The Chicago Area Transportation Study (CATS), led by a Policy Committee composed of county and local government representatives as well as regional planning agencies, transportation agencies and federal funding/oversight agency representatives, is the Metropolitan Planning Organization responsible for regional transportation planning in northeastern Illinois, consisting of Cook, DuPage, Kane, Kendall, Lake, McHenry and Will counties, and a portion of Grundy county. Long-range planning for the regional transportation system helps provide the coordination needed to address mobility, cost efficiency, and environmental protection.

The Illinois Department of Transportation (IDOT) has jurisdiction over the expressway system and many of the region’s major arterials. Meanwhile, the Illinois State Toll Highway Authority (ISTHA) has jurisdiction over tollway routes. County and local units of government control other roads.

Transit services and infrastructure fall under the purview of the Regional Transportation Authority (RTA) and its three service boards: the Chicago Transit Authority (CTA), Metra commuter rail, and Pace suburban bus, along with other private transportation providers. In addition, Metra’s commuter rail operations depend largely on tracks owned by freight railroads such as the Burlington Northern Santa Fe and Union Pacific who have jurisdiction over their own lines. Within the Cook DuPage Corridor Metra operates three commuter rail lines. The Chicago Transit Authority (CTA) operates three rapid transit lines and fixed route bus service. Pace operates fixed route bus service, American Disabilities Act paratransit service, and vanpool services. CATS’ Share-the-drive provides regional rideshare services.

1.3.1 Relationship to Regional Transportation Plan

The Cook-DuPage Corridor is itself one of several multi-modal study corridors named in the region’s 2030 Regional Transportation Plan. Multi-modal study corridors integrate analysis and evaluation of RTP strategic, system, project and corridor recommendations. A number of major capital projects that could potentially improve mobility for the major travel markets of the Cook-DuPage Corridor are included in the region’s 2030 Regional Transportation Plan. Of the Plan’s over 50 major capital projects, 11 aim to address mobility improvements in the Cook-DuPage Corridor (see Table 2.4 on page 18). However, the RTP projects were identified prior to the Cook-DuPage Travel Market Analysis and were not developed specifically to address the mobility needs of the Cook-DuPage travel markets upon which they may have an impact.
1.3.2 Local Plans

Most of the counties and municipalities in Northeastern Illinois have adopted comprehensive, land use and/or transportation plans. The DuPage Area Transit Plan serves as the official transit plan for DuPage County. Corridor Planning Standards is an important companion effort in which the RTA is assisting local officials from corridor communities to develop supplemental criteria that reflect shared local values and preferences with which to consider corridor improvement options.

2.0 Corridor Definition

2.1 Description of Cook-DuPage Corridor

The study area, known as the Cook-DuPage Corridor and shown in blue in Figure 2.1 extends approximately 27 miles east to west from Cicero Avenue (IL 50) in the city of Chicago to the Kane/DuPage county line. Metra’s Milwaukee District-West and Burlington Northern Santa-Fe commuter lines form the north and south boundaries, respectively. The corridor spans two counties, 51 suburban municipalities and the far west side of Chicago; furthermore, the Corridor represents over 1 million residents, 750,000 jobs and nearly 800,000 daily work trips that either begin or end in the corridor. The Cook-DuPage Corridor comprises 13% of the region’s population, 15% of the region’s employment and 22% of the region’s daily work trips.

Jobs exceed the resident workforce in the corridor; the corridor must import workers. Employment is projected to continue to outpace population growth, meaning reliance on people living outside the corridor to fill jobs inside the corridor will increase. The six key employment centers in and around the corridor are as follows:

(a) Warrenville/Naperville/Lisle;
(b) Yorktown (Lombard)/Oak Brook area;
(c) Elmhurst/Addison;
(d) Thorndale Avenue Corridor;
(e) Schaumburg (along IL 53/I-355/I-290); and
(f) Loyola University Medical Center/Hines VA Hospital (Maywood).
Transportation is a major feature of the land in the corridor. Four interstate highways traverse the corridor along with three radial commuter rail lines. In addition, three Chicago Transit Authority rapid transit lines extend into the far eastern portion of the corridor. An extensive grid of arterials serves local and sub-regional travel. Three of the region’s Interstate highways, the Eisenhower Expressway (I-290), the Ronald Reagan Memorial Tollway (I-88), and the Tri-State Tollway (I-294) converge near the center of the corridor in Hillside. Farther west in DuPage County, the Ronald Reagan Memorial Tollway and the North-South Tollway (I-355) converge between Downers Grove and Lisle.

2.2 Travel Market Area

To identify major travel patterns in an area as large and complex as the Cook-DuPage Corridor, an expanded definition of the travel market area was made to account for both corridor-specific travel as well as for travel to/from the corridor and neighboring areas. The travel market area shown in green in Figure 2.2 covers the central portion of the six county Chicago metropolitan area. It includes all of DuPage and Kane counties, central and northwest Cook county and northwest Will county.
2.3 Existing Roadway System

The current roadway system includes expressways, tollways, and other major arterials in the Cook-DuPage Corridor. Interstate highways either radiate from or bypass the city of Chicago. The arterial highways are more closely spaced to a grid network, with diagonals radiating northwest and southwest from Chicago.

The principal arterial system is comprised of expressways, tollways, and other principal arterial roads and is the main focus of the highway transportation system for this corridor (Figure 2.3). The expressway and tollway system serves as the highway backbone, with the arterial system supporting it.

The interstate system in the Chicago area provides access to, through, and around the city of Chicago and its suburbs. The Chicago interstate system is comprised of routes that either radiate out from or bypass the city center. The interstates that provide access to downtown Chicago are I-94 (Dan Ryan Expressway), I-55 (Stevenson Expressway), I-290 (Eisenhower Expressway), and I-90 (Kennedy Expressway). Bypass routes include I-294 (Tri-State Tollway) and I-355 (North-South Tollway).

The Cook-DuPage Corridor lies within the western wedge formed by I-90 and I-55. The interstate highway system within the Corridor consists of I-290, I-294, I-355, and I-88. I-290 and I-88 are generally east-west highways, while I-294 and I-355 are north-south highways. Three of the four interstates within the corridor come together near Hillside, where I-294, I-88, and I-290 converge.

2.3.1 Eisenhower Expressway (I-290)

Within the corridor, I-290 is known as the Eisenhower Expressway and the I-290 Extension. The Eisenhower Expressway refers to the section of I-290 that runs from downtown Chicago to the interchange with the Tri-State (I-294) and Ronald Reagan Memorial Tollways (I-88). The I-290 Extension refers to the section of I-290 west of the Tri-State to I-90. The Eisenhower Expressway is the major east-west highway within the Cook portion of the corridor, comprised of eight travel lanes (four lanes in each direction) from the eastern corridor limits at Cicero Avenue (IL 50) to Austin Boulevard. From Austin Boulevard to 25th Avenue, the Eisenhower has six lanes. West of 25th Avenue and until the Hillside interchange with I-88 and I-294 the Eisenhower has a total of eight lanes.
The I-290 Extension, through the junction of the Eisenhower and the Tri-State Tollway, becomes a four lane highway (two lanes in each direction) until reaching the bridge structure over the Union Pacific Railroad. Between the Union Pacific overpass and North Avenue (IL 64) the I-290 Extension widens to six lanes. After North Avenue, the I-290 Extension becomes a 10-lane highway until the Lake Street interchange. For a brief distance of approximately one mile, US 20 (Lake Street) is routed on I-290. From the Lake Street interchange to the North-South Tollway (I-355), the I-290 Extension maintains six travel lanes. North of the I-290/Tollway junction, the I-290 Extension is 10 lanes until it exits the corridor at the Metra Milwaukee District West Line overpass. Outside of the corridor, the I-290 Extension drops back down to eight lanes.

Although it is a limited access highway, the Eisenhower Expressway/I-290 Extension has full interchanges at roughly one mile intervals as it courses through the corridor. From east to west, full interchanges are located at Central Avenue, Austin Boulevard, Harlem Avenue, 1st Avenue, 17th Avenue, 25th Avenue, Mannheim Road, Ronald Reagan Memorial Tollway, Tri-State Tollway, St. Charles Road, North Avenue, Lake Street, York Road, Illinois 83 and the North-South Tollway.
2.3.2 Ronald Reagan Memorial Tollway (I-88)

The Ronald Reagan Memorial Tollway (I-88) extends west of the Eisenhower Expressway and starts close to the interchange with the Tri-State Tollway (I-294). Together with the Eisenhower, the Ronald Reagan Memorial Tollway is the major east-west highway in the corridor. For a length of approximately 13 miles until it reaches Washington Street (Naperville), the tollway has a width of six lanes (three lanes in each direction). Between Washington Street and Illinois 59, the Tollway is eight lanes wide (four lanes in each direction). Past Illinois 59, the Tollway is four lanes wide (two lanes in each direction) until it exits the corridor at the Kane-DuPage county line.

Interchange spacing on the Tollway system is typically greater than on the Expressway system and therefore access/egress opportunities are generally more limited. This is a legacy of the lower development densities in suburban areas that prevailed when the Tollway system was designed and built in the late 1950s and the desire to achieve an optimum balance between costs and revenue. As development and traffic have increased over time, new interchanges have been added.

A mix of full and partial interchanges provides access and egress to/from the Ronald Reagan Memorial Tollway in the corridor. Full interchanges are provided at intersecting elements of the Tollway system – the North-South (I-355) and Tri-State Tollways (I-294). At its east end, I-88 is marked by a series of closely spaced, partial interchanges at York Road, Spring Road, Illinois 83, and Midwest Road. Because of their relative close proximity, a pair of partial interchanges at Ogden Avenue (via I-355) and Illinois 53 functions as a full interchange. At the far west end of the corridor, full interchanges are located at Naperville Road, Winfield Road and Illinois 59 in the space of five miles. Further west, just over the Kane/DuPage county line in Aurora, full interchanges are located at Farnsworth Avenue, Illinois 31 and Orchard Road.

2.3.3 Tri-State Tollway (I-294)

The Tri-State Tollway (I-294) from Hinsdale in the south to Schiller Park in the north travels in a predominantly north-south direction within the corridor. The Tri-State Tollway has eight travel lanes (four lanes in each direction) for its 11 miles within the corridor and has connections with the Ronald Reagan Memorial Tollway and the Eisenhower Expressway near Hillside. Within the corridor, the Tri-State Tollway (I-294) features full interchange access at Ogden Avenue, Ronald Reagan Memorial Tollway (I-88) and the Eisenhower Expressway. Access to and egress from I-294 is limited at the Cermak Road, Roosevelt Road and Lake Street/North Avenue interchanges.

2.3.4 North-South Tollway (I-355)

The North-South Tollway is the major north-south highway through the DuPage portion of the corridor. It has six travel lanes (three lanes in each direction) from the southern boundary of the corridor to the interchange with the Ronald Reagan Memorial Tollway. Through the interchange with the Ronald Reagan Memorial Tollway, the North-South Tollway adds and drops lanes until it exits the junction and returns to six lanes. The North-South Tollway maintains six lanes north of the Ronald Reagan Memorial Tollway junction to the junction with I-290. After the merge with I-290, the highway increases to 10 travel lanes until it exits the corridor. Toll plazas exist from Lisle in the south to the interchange with Army Trail Road in Addison just before the merge with I-290. The North-South Tollway (I-355) has full interchanges at two to three mile intervals within the corridor. From north to
south, these are located at Army Trail Road, North Avenue, Roosevelt Road, Butterfield Road, Ronald Reagan Memorial Tollway, and Ogden Avenue.

2.3.5 The Hillside Interchange

Three of the region’s interstate highways, the Eisenhower Expressway (I-290), Ronald Reagan Memorial Tollway (I-88), and Tri-State Tollway (I-294) converge near the center of the corridor in Hillside. The present day Hillside Interchange is the result of events that occurred in the initial planning of the Chicago area expressway and tollway systems in the 1940s and 1950s.

In 2003, at the Hillside Interchange, the Eisenhower Expressway had an AADT of about 187,000 vehicles, the Tri-State had an AADT of 143,000, and the Ronald Reagan Memorial Tollway had an AADT of about 100,000. This constitutes a total of about 430,000 vehicles using the Hillside Interchange on any given day, a testimony to the fact that it is among the busiest in the nation.

2.3.6 Arterial Highways

The arterial roads comprise the primary arterial system and form a grid system more so than the expressways and tollways.

The east-west arterial roadways within the corridor include:

(a) IL 19 (Irving Park Road);
(b) U.S. 20 (Lake Street);
(c) Stearns Road;
(d) Army Trail Road (DuPage portion);
(e) Grand Avenue;
(f) IL 64 (North Avenue);
(g) IL 38 (Roosevelt Road);
(h) IL 56 (Butterfield Road);
(i) 22nd Street/Cermak Road; and
(j) U.S. 34 (Ogden Avenue).

The north-south arterial roadways within the corridor include the following:

(a) IL 59 (Sutton Road);
(b) County Farm Road;
(c) Naperville Road;
(d) Schmale Road;
(e) Roselle/Bloomingdale Road;
(f) IL 53 (Bryant/Rohlwing/Lincoln Road);
(g) IL 83 (Kingery Highway);
(h) U.S. 12/20/45 (Mannheim Road);
(i) IL 171 (1st Avenue);
(j) IL 43 (Harlem Avenue); and
(k) IL 50 (Cicero Avenue).

2.4 Existing Transit Service

Transit services currently operating in the Cook DuPage Corridor include Metra commuter rail, CTA rapid transit service and fixed route bus service, and Pace bus service (Figure 2.4)

Figure 2.4: Existing Transit Service, 2005
Source: Regional Transportation Authority (RTA)

2.4.1 Commuter Rail Service

Metra lines that serve the Cook-DuPage Corridor include the Burlington Northern Santa-Fe (BNSF), the Union Pacific West (UP-W) and the Milwaukee District West (MD-W) lines. Like all other Metra commuter rail lines, the BNSF, UP-W, and MD-W are oriented toward downtown Chicago and function primarily to bring suburban workers to and from job locations in downtown Chicago Monday through Friday. Train schedules are designed to optimize travel times between the suburbs and downtown Chicago in the morning, and in the reverse direction in the evening. Other types of corridor travel, such as trips between suburban communities (intermediate trips) and reverse commute trips from Chicago to the suburbs during the morning peak are also served, but within the context of Metra’s peak direction schedule.

Weekday train service and schedules for full service lines feature a combination of express and local trains during the a.m. and p.m. peak hours, with local trains running during off-
peak hours (midday and evening). Metra defines a.m. peak operations as trains that arrive to or depart from downtown between the start of service to 9:15 a.m. Peak operations in the p.m. refer to trains that arrive to or depart from downtown from 3:30 p.m. to 6:45 p.m. Table 2.1 summarizes the frequency and distribution of service on each line.

<table>
<thead>
<tr>
<th>Metra Line</th>
<th>Eastbound Trains</th>
<th>Westbound Trains</th>
<th>Suburb to Chicago CBD Commute</th>
<th>Reverse Commute</th>
<th>Weekend Service</th>
</tr>
</thead>
<tbody>
<tr>
<td>MD-W</td>
<td>29</td>
<td>29</td>
<td>Eastbound Morning Peak Trains (Start to 9:15 a.m.)</td>
<td>Westbound Afternoon Peak Trains (3:30 to 6:45 p.m.)</td>
<td>Saturday Trains in Both Directions</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>14</td>
<td>5</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>30</td>
<td>14</td>
<td>6</td>
<td>20</td>
</tr>
<tr>
<td>BNSF</td>
<td>47</td>
<td>47</td>
<td>31</td>
<td>9</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>23</td>
<td>23</td>
<td>28</td>
</tr>
</tbody>
</table>

Table 2.1: Corridor Commuter Trains per Day by Metra Line, 2005

A mode of access survey conducted by Metra in 2002 found that the most common modes of access to the train stations include autos, drop-offs, walk, bus and carpools. Except for the Naperville station which has the most extensive feeder bus system of all stations, auto access to most of the rail stations in the corridor ranges from about 70 to about 80 percent.

Burlington Northern Santa Fe (BNSF): This line extends west from downtown Chicago (Union Station) to Aurora, a one-way distance of approximately 38 miles. This is the most heavily used rail line through the corridor, serving communities in Cook, DuPage, and Kane counties. This triple-track railroad line has been designed to support intense operations and is used by 106 daily commuter trains including deadheads (trains that return to the terminal providing no passenger service), over 100 freight trains and six daily Amtrak trains with stops at LaGrange and Naperville.

On a typical weekday 48 trains operate inbound to Chicago from the western suburbs. Of these, 31 are scheduled during the a.m. peak period and seven during the p.m. peak. Outbound service consists of 47 trains per weekday. Of the outbound trains, nine operate in the a.m. peak and 23 in the p.m. peak. Not all of these Metra commuter trains operate over the complete length of the line. Stations with the highest number of weekday boardings include Route 59, Naperville, Downers Grove, and Lisle.

With its frequent service and fast peak-period express trains, the BNSF carries more commuters than any other Metra line. In 2002, the line averaged 52,479 weekday trips (26,370 inbound and 26,109 outbound), or 19 percent of Metra’s total weekday passengers for all lines. Ninety percent of these passenger trips occur during the a.m. and p.m. peak periods spanning a total of eight hours. Nearly all (23) of the line’s 26 stations are located in the Cook-DuPage Corridor. The Route 59 and Naperville stations rank first and second in terms of total weekday boardings out of 236 outlying Metra stations with 5,001 and 3,734 boardings, respectively. The Downers Grove Main Street station and Lisle station rank fourth and sixth with 2,371 and 2,204 boardings, respectively.

Park-and-ride facilities along the BNSF are among Metra’s largest in capacity. Each of the BNSF’s three westernmost stations (Aurora, Route 59, and Naperville) had more than 1,000
parking spaces available in 2001. The Route 59 station is Metra’s largest park and ride facility and has a capacity of nearly 4,000 parking spaces. Additionally, the BNSF has five remote park-and-ride lots in Naperville, Bolingbrook, and Burr Ridge with connections provided by Pace bus routes.

Union Pacific-West (UP-West) Line: This line extends west from downtown Chicago (Ogilvie Transportation Center) through Geneva to Elburn, a one-way distance of approximately 44 miles. The line runs through the center of DuPage County and into central Kane County. This line is also a major freight route, being the UP’s mainline between Chicago and the west coast. Double and triple track territory alternate on the UP-W Line between downtown Chicago and Elburn but it operates more like a double track railroad as far as Metra is concerned. The rail line averages 140 trains each weekday, which is composed of 67 Metra trains, including dead heads, and between 70 and 75 freight trains. Metra commuter service was extended west from Geneva to Elburn (about 8 miles) in January 2006.

There are 29 inbound trains each weekday under current schedules for the UP-W Line. Of these, 14 operate during the a.m. peak and three during the p.m. peak. Outbound service consists of 30 daily trains, with six in the a.m. peak and 14 in the p.m. peak. Not all of the Metra commuter trains operate over the complete length of the line. Stations with the highest number of weekday boardings include Elmhurst, Geneva, Glen Ellyn and Wheaton.

In 2002, the UP-West Line averaged 24,369 weekday trips (12,187 inbound and 12,182 outbound), or nine percent of Metra’s total weekday passengers for all lines. Eighty-three percent of these trips occur during the a.m. and p.m. peak periods spanning eight hours. Nearly all (14) of the line’s 18 outlying stations are located in the Cook-DuPage Corridor. The only exceptions are the Geneva, LaFox and Elburn stations in Kane County and the Kedzie station, a little used station in the city of Chicago. The Elmhurst and Geneva stations rank eighth and tenth in terms of total weekday boardings out of 236 outlying Metra stations with 1,785 and 1,698 boardings, respectively. The Glen Ellyn and Wheaton stations both rank 11th with 1,665 boardings each.

The UP-West’s largest park-and-ride facility is located in the middle of the line, at the Elmhurst station. Geneva has the second greatest parking capacity along the UP-W, providing almost 1,000 parking spaces in 2001. During weekdays, most UP-West park-and-ride facilities exceed 85 percent utilization.

Milwaukee District West (MD-West) Line: This line extends west from downtown Chicago (Union Station) to the city of Elgin, a one-way distance of nearly 40 miles. The line travels through the near west suburbs of Cook county, northeastern DuPage County, the far northwest portion of Cook County, and into eastern Kane County. It is a double track line for most of its length with triple track territory east of Franklin Park, and has a moderate amount of daily freight traffic in addition to the commuter service. On weekdays, there are 58 scheduled commuter trains, although not all of these operate over the complete length of the line, and 11 freight trains.

Inbound trains currently total 29 each weekday. Of these, 14 operate during the a.m. peak period and four during the p.m. peak. Outbound service totals 29 trains per weekday, with five in the a.m. peak and 13 in the p.m. peak.

In 2002, the MD-West Line averaged 21,017 weekday trips (10,423 inbound and 10,594 outbound), or eight percent of Metra’s total weekday trips for all lines. Seventy-two percent of these trips occurred during the a.m. and p.m. peak periods spanning eight hours.
Sixteen of the line’s 22 stations are located in the Cook-DuPage Corridor. The Schaumburg station has the highest number of total weekday boardings of any station on the line and ranks 16th out of 236 outlying stations with 1,609 boardings.

The MD-West’s most significant park-and-ride facilities are found at Hanover Park, Schaumburg, and Roselle. Each of these facilities accommodates more than 1,000 automobiles. As in the case of the BNSF and the UP-West, most MD-West park-and-ride facilities are well utilized during the weekdays, with stations averaging 80 percent utilization.

2.4.2 Rapid Transit Service

Three CTA rapid transit routes extend into the Cook-DuPage Corridor. These are the Green Line and the Forest Park and Cermak branches of the Blue Line (also known as the Congress and Douglas branches, respectively). In total there are 14 CTA rapid transit stations located within the corridor – seven Green Line stations, five Forest Park Branch stations, and two Cermak Branch stations. These lines are part of an extensive system of rapid transit and bus services in the city of Chicago that can provide access to and from virtually any destination within the city. Like the commuter rail system, the CTA’s rapid transit lines also converge in the downtown Chicago area. Rapid transit service levels vary by time of day, but are the same in both directions. This reflects the different travel markets served by Metra and the CTA, the different development patterns in which each service functions (suburban versus urban development), and the different operational constraints of each service. With the exception of the Purple Line Express which operates during peak periods, rapid transit trains make all stops in both the inbound and outbound direction. Table 2.2 presents the number of CTA trains that are in operation for different time periods through the week by direction.

<table>
<thead>
<tr>
<th>CTA Branch</th>
<th>Inbound Trains</th>
<th>Outbound Trains</th>
<th>Inbound a.m. Peak Trains (7:00-9:00 a.m.)</th>
<th>Outbound a.m. Peak Trains (4:00-6:00 p.m.)</th>
<th>Inbound p.m. Peak Trains (7:00-9:00 a.m.)</th>
<th>Outbound p.m. Peak Trains (4:00-6:00 p.m.)</th>
<th>Saturday Trains Both Directions</th>
<th>Sunday Trains Both Directions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forest Park (Blue)</td>
<td>103</td>
<td>102</td>
<td>8</td>
<td>8</td>
<td>13</td>
<td>12</td>
<td>307</td>
<td>245</td>
</tr>
<tr>
<td>Cermak (Blue)</td>
<td>94</td>
<td>95</td>
<td>8</td>
<td>8</td>
<td>12</td>
<td>12</td>
<td>150</td>
<td>119</td>
</tr>
<tr>
<td>Lake (Green)</td>
<td>123</td>
<td>125</td>
<td>16</td>
<td>15</td>
<td>16</td>
<td>15</td>
<td>224</td>
<td>189</td>
</tr>
</tbody>
</table>

Table 2.2: Corridor Rapid Transit Level of Service, 2005

The Green Line, which follows Lake Street between Chicago’s Loop and Central Avenue, where it joins the alignment of Metra’s UP-W Line, terminates at the Harlem/Lake station in the village of Oak Park. The Blue Line Forest Park Branch follows the Eisenhower Expressway and terminates at Des Plaines Avenue in the village of Forest Park. The Cermak Branch parallels Cermak Road and terminates at 54th Avenue in the town of Cicero.
Each of these stations has park-and-ride lots to accommodate the larger catchment areas typically served by terminal stations. Forest Park offers the second largest park-and-ride facility in the CTA system with a capacity of 1,051 spaces. In 2000, the parking was 90 percent full on an average weekday. The 54th/Cermak terminal offers 175 spaces with a reported 21 percent utilization in 2000, reflecting in part the low ridership at that station. At the Harlem/Lake terminal, 229 general-purpose parking spaces are available on a first come first served basis in four village lots.

The Harlem/Lake, Forest Park and 54th/Cermak terminals also are major transfer points between suburban buses and the CTA rapid transit system. The Forest Park terminal in particular offers extensive transfer opportunities with connections to twelve Pace suburban bus routes; including express routes to Prairie Stone in Hoffman Estates, the Schaumburg/Woodfield area and the Oak Brook area. The Harlem/Lake station in Oak Park is a major intermodal transfer point where it is possible to change between all possible services on the region’s transit network, including CTA rapid transit, CTA bus, Metra commuter rail and Pace suburban bus.

The Green Line Lake Street Branch is in operation seven days a week. Travel time from the Harlem/Lake station to the Loop is approximately 23 minutes. On weekdays, the Green Line operates 21 hours per day (from 4:00 a.m. to 1:00 a.m.), and maintains peak headways averaging approximately once every 10 minutes. Saturday service starts at 6:00 a.m. and ends at 1:00 a.m. Sunday. Generally, Saturday trains operate once every 10 minutes. Sunday service is available from 7:00 a.m. to 1:00 a.m. Monday with trains arriving once every 10 to 15 minutes.

The Forest Park Branch, and the companion Cermak Branch of the Blue Line which both serve the west side of Chicago operate on an alternate-train basis. Cermak Branch trains operate all days of the week from 4:00 a.m. to 1:00 a.m. During weekdays, trains maintain 12- to 15-minute headways, with 15-minute headways on Saturday and 20-minute headways on Sunday. Travel time to the downtown area from 54th/Cermak is currently scheduled at 30 minutes. Forest Park Branch trains operate all days of the week, 24 hours per day. During weekdays, trains maintain headways of approximately 15 minutes. Saturday trains generally operate once every 15 minutes. For most of Sunday, trains operate at 20-minute headways. Travel time to the downtown area from Forest Park is currently scheduled at 26 minutes.

As part of its west side/west suburban service improvements, in summer 2006, the CTA will undertake a 180 day trial re-route of most Blue Line Cermak branch trains from the existing Congress/Dearborn Street subway routing to the Paulina Connector and the Lake Street “L” to the Loop elevated. Some trains will continue to use the Congress/Dearborn Street subway routing during an extended morning and evening peak period from 5:30 a.m. – 9:30 a.m. and 2:30 p.m. – 6:30 p.m. The rerouting will increase service on the Forest Park and Cermak branches of the Blue Line because trains would no longer be split between the two branches. On the Forest Park branch, trains will follow the current train frequencies on the O’Hare branch – every 7 minutes. On the Cermak branch, trains will operate every 10 minutes versus the current 15 minute interval.

Of the three rapid transit branches within the corridor, the Forest Park Blue line branch has the greatest number of entries, averaging more than 24,000 per weekday. The Lake Green line branch averages nearly 20,000 entries per weekday, while the Cermak Blue line branch averages a little more than 9,000 entries per weekday.

2.4.3 Corridor Bus Service
Bus service in the corridor is mainly provided by CTA and Pace. CTA provides bus service in the eastern, more urbanized portion of the corridor, while Pace provides service throughout the entire corridor. Coordination between the two operations allows for enhanced connectivity between the services.

CTA Bus Service: Seventeen CTA bus routes serve the study area (see Table 3.6 on page 3-26 of the *Existing and Future Conditions* report). Within the Cook-DuPage corridor, CTA bus service is primarily available in the easternmost area of the corridor. CTA bus service primarily accommodates destinations in Chicago, intermediate destinations, and connections to CTA’s Blue Line and Green Line rapid transit routes. On average, the majority of routes run at less than 15-minute headways. For the most part, all weekday routes provide peak, midday and evening service. Most routes operate at least 12 hours per day and provide weekend service.

As part of its west side/west suburban service improvements, in summer 2006 the CTA will undertake changes to almost half of its bus routes serving the corridor. These changes are designed to reduce travel times, improve connections between rail and bus, and improve access to major destinations in and around the west side of Chicago. The most notable changes that affect the corridor are new express bus routes on Madison Street and Cicero Avenue, and extension or elimination of segmentation of routes on Cermak Road and Harlem Avenue.

Pace Bus Service: A total of 90 Pace bus routes operate in or through the study area (see Table 3.7 on page 3-29 of the *Existing and Future Conditions* report). Pace bus service exhibits several different characteristics, depending on location within the corridor. In the eastern end of the corridor, routes tend to be suburban line-haul services operating on major arterials accessing housing and employment centers as well as commuter rail and rapid transit stations. Further west in DuPage, the nature of the bus routes shifts to suburban circulators and commuter rail feeder routes. Many of the routes in the outer suburban areas operate weekdays only, or provide service only during peak periods/in the peak direction of travel.

Route 322 Cermak Road/22nd Street, Route 307 Harlem and Route 330 Mannheim-LaGrange Road are among the routes with the most service provided during the weekday, each averaging more than 60 revenue-hours per weekday. Route 307 Harlem and Route 322 Cermak Road/22nd Street have the highest ridership levels, each averaging more than 3,000 boardings per weekday. Pace’s coverage in the corridor remains quite extensive during the weekday evening hours as all routes remain in operation after 7:00 p.m. with one exception (Route 317 Westchester). However, the midday suburban bus service is considerably scaled back. As Pace’s feeder services to Metra wind down after the morning rush period, midday Pace service becomes mainly concentrated in the eastern portion of the corridor (east of I-294) and largely consists of CTA connector routes.

Although approximately one-quarter of Pace routes (25 of 90) are classified as CTA connector routes, the connector service represents greater than 70 percent of Pace’s revenue hours operated within the corridor each weekday.

The Hillside park-and-ride lot, located along I-290 at Wolf Road has a capacity of approximately 80 spaces and is served by Route 767 Congress/Douglas Prairie Stone Connection. Route 767 provides connections to Prairie Stone in Hoffman Estates from the Blue Line Forest Park Station and the 54th Avenue Blue Line Station.
2.5 Planned Transportation Network

The 2030 Regional Transportation Plan, adopted by the Chicago Area Transportation Study Policy Committee in October 2003 and approved by the Northeastern Illinois Planning Commission (NIPC) and the RTA, presents broad categories of recommendations including regional strategies, strategic regional systems, and major capital projects. Table 2.2 and Table 2.3 below show the list of committed and recommended highway and transit projects that are most likely to influence the Cook-DuPage corridor.

Pace’s Vision 2020 plan proposes to fundamentally redesign suburban transit services in the region including a network of high-speed inter-suburban transit service as well as community based services. A separate plan, the DuPage Area Transit Plan developed by the DuPage Mayors and Managers Conference and DuPage County, envisions three tiers of transit service in the DuPage County area by 2020. These services include a high-speed Bus Rapid Transit service connecting the major regional activity centers of Naperville, Oak Brook, O’Hare, and Schaumburg supplemented by a network of connector bus/rail and localized circulator routes.

<table>
<thead>
<tr>
<th>Project</th>
<th>Within Corridor?</th>
<th>Likely to Affect Corridor Travel?</th>
<th>Expected Completion Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blue Line Douglas Branch Rehabilitation</td>
<td>Yes</td>
<td>Yes</td>
<td>complete</td>
</tr>
<tr>
<td>Union Pacific West Elburn Extension</td>
<td>No</td>
<td>Yes</td>
<td>complete</td>
</tr>
<tr>
<td>Brown Line Rehabilitation</td>
<td>No</td>
<td>No</td>
<td>2008</td>
</tr>
<tr>
<td>North Central Service Upgrade (Phase I)</td>
<td>Yes</td>
<td>Yes</td>
<td>complete</td>
</tr>
<tr>
<td>SouthWest Service Manhattan Extension</td>
<td>No</td>
<td>No</td>
<td>complete</td>
</tr>
</tbody>
</table>

Table 2.3: 2030 RTP Committed Major Capital Projects

Source: Chicago Area Transportation Study, RTA

<table>
<thead>
<tr>
<th>Project</th>
<th>Within Corridor?</th>
<th>Likely to Affect Corridor Travel?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Union Pacific West Improvements</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>O’Hare and Midway Airport Express Rapid Transit</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Blue Line West Extension</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Ogden Avenue Transitway</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>West Loop Transportation Center</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Burlington Northern Santa Fe Extension</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Central Area Bus Rapid Transit System</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Circle Line</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Green Line Enhancements
No No
Orange Line Extension
No No
Yellow Line Enhancements and Extension
No No
Red Line Extension
No No
Heritage Corridor Improvements
No No
Rock Island Improvements and Extensions
No No
Southwest Service Improvements and Extensions
No No
Metra Electric Improvements and Extensions
No No
Milwaukee District West Improvements and Extension
No Yes
Cermak Road Bus Rapid Transit
Yes Yes
DuPage “J” Line Bus Rapid Transit
Yes Yes
Inner Circumferential Rail Service
Yes Yes
Suburban Transit Access Route (STAR) Line
Yes Yes
North Central Service Improvements (Full Service)
Yes Yes
Mid-City Transitway
Yes Yes
Milwaukee District North Improvement and Extension
No No
Union Pacific Northwest Improvements and Extensions
No No
South East Commuter Rail Service
No No

<table>
<thead>
<tr>
<th>Highway</th>
<th>2030 RTP Major Capital Recommendations</th>
</tr>
</thead>
<tbody>
<tr>
<td>I-88 (Ronald Reagan Memorial Tollway) Lane Addition</td>
<td>Yes Yes</td>
</tr>
<tr>
<td>I-290 High Occupancy Vehicle (HOV) Lanes</td>
<td>Yes Yes</td>
</tr>
<tr>
<td>I-90 (Northwest Tollway) Improvements Lane Addition</td>
<td>No Yes</td>
</tr>
<tr>
<td>I-294/I-94 (Tri-State Tollway)</td>
<td>No Yes</td>
</tr>
<tr>
<td>Elgin-O’Hare Expressway completion and West O’Hare Bypass</td>
<td>No Yes</td>
</tr>
<tr>
<td>Elgin O’Hare Expressway Lane Addition</td>
<td>No Yes</td>
</tr>
<tr>
<td>I-355 Extension</td>
<td>No Yes</td>
</tr>
<tr>
<td>I-57 Lane addition</td>
<td>No No</td>
</tr>
<tr>
<td>IL-394 Lane Addition and Upgrade</td>
<td>No No</td>
</tr>
<tr>
<td>Richmond-Waukegan Corridor Expansion</td>
<td>No No</td>
</tr>
<tr>
<td>Central Lake County Corridor</td>
<td>No No</td>
</tr>
<tr>
<td>South Suburban Corridor</td>
<td>No No</td>
</tr>
<tr>
<td>I-57/IL-394 Corridor</td>
<td>No No</td>
</tr>
<tr>
<td>Illiana Corridor</td>
<td>No No</td>
</tr>
<tr>
<td>Prairie Parkway</td>
<td>No No</td>
</tr>
<tr>
<td>I-80 Lane Addition</td>
<td>No No</td>
</tr>
<tr>
<td>I-55 (Weber Road-U.S. 6) Lane Addition</td>
<td>No No</td>
</tr>
</tbody>
</table>

Table 2.4: 2030 RTP Major Capital Recommendations

Source: Chicago Area Transportation Study, RTA

2.6 Land Use

The communities in the Cook-DuPage Corridor are diverse in their size, demographics, stage of development and industry composition. The west Cook County suburbs grew rapidly in the post-World War II period and are highly urbanized today. A number of communities, such as Cicero, Broadview, Bellwood and Maywood, have maintained a strong industrial base. Other communities such as Oak Park, Forest Park, Riverside, Brookfield, LaGrange Park and Western Springs, are largely residential in character with commercial development primarily along arterials and within downtown business districts. Economic development opportunity within these communities is focused on redevelopment, rather than expansion.
Most communities in DuPage developed as bedroom communities along rail lines in the early to mid 1900’s. Major concentrations of office, research and commercial development have emerged along the Ronald Reagan Memorial Tollway (I-88) and major arterial roadways. Two regional shopping centers, Yorktown Center and Oakbrook Center have been developed close to one another in the eastern part of county near I-88. The Oak Brook/Oakbrook Terrace area in particular has developed into a major regional office/hotel/commercial district. The Oak Brook area (I-88 corridor) is one of three major activity centers in the region. DuPage also supports a significant industrial base, with a number of manufacturing firms and industrial parks located in communities such as Addison, Bensenville, Carol Stream, Elmhurst, Hanover Park, Wood Dale, and West Chicago.

The extent and variety of development underpins the corridor’s role as a major population and employment base in the Chicago metropolitan region. The predominant land use throughout the corridor is residential, as shown in Figure 2.5. However, the Cook-DuPage Corridor includes a broad mix of land uses, including commercial, manufacturing, and industrial development. These land uses tend to generate some of the highest employment densities.

![Figure 2.5: Land Use, 2001](source: Northeastern Illinois Planning Commission)

DuPage county has seen significant growth in population and employment over the past three decades. This growth is reflected in the increasing amount of land developed, while rapidly decreasing the county’s available land, from over 40,000 undeveloped acres in 1990 to about 12,500 in 2003, according to DuPage County’s 2003 Land Use Analysis and Trends. In 2003, over 36% of the county’s total land was devoted to residential uses. Office/industrial/business park land uses increased from 3.1% in 1990 to 8.3% in 2003,
indicative of the large number of jobs created in the county over the past decade. Commercial uses accounted for 3.9% and open space accounted for nearly 20% of total land in 2003.

In general, more land is developed in the Cook portion of the corridor and in the eastern and central portions of the corridor in DuPage County. The DuPage portion of the corridor has nearly one fifth of its land classified as vacant/agricultural/wetland with most of this concentrated in the far western portion of the corridor, suggesting the potential for future residential and employment growth in this area. In contrast, the Cook portion of the corridor has only one percent of land in the same category. Open space and water are also prevalent in the western portion of the corridor consistent with the many large forest preserves located there. While open space is scattered throughout the corridor, larger contiguous areas of open space are more common in DuPage.

The predominant land use in the corridor is residential, with the greatest proportion of residential use found in the eastern portion of the corridor spanning the west side of Chicago and adjacent suburbs of Oak Park, Cicero and Berwyn. The next most prevalent land uses in the Cook portion of the corridor are manufacturing/industrial, and open space and water. Interestingly, the Cook portion of the Corridor has more than double the proportion of land in manufacturing/industrial use compared to the DuPage portion. Northlake, portions of Franklin Park and unincorporated Leyden township have the greatest proportion of manufacturing and industrial land use, composing 35 percent of its total area equaling its residential area.

2.7 Population and Employment

The Cook-DuPage Corridor is a demographically diverse corridor that is home to 1.1 million residents or 13 percent of the six-county region’s population. It has also experienced considerable growth in employment since 1970, with about 750,000 jobs concentrated in the corridor comprising 15 percent of the six-county region’s employment. Over 500,000 of the Cook-DuPage corridor residents are employed and almost one-third of the corridor’s residents are either under the age of 16 years or over the age of 65 years.

Figure 2.6 presents the corridor projected population growth between 2000 and 2030. These forecasts, developed by NIPC in conjunction with the 2030 Regional Transportation Plan (CATS, 2003) and the 2040 Regional Framework Plan (NIPC, 2005), suggest a modest growth in population (four percent) between 2000 and 2030. However, the far-western portions of the corridor are expected to grow at a much higher rate, with an expected addition of more than 27,000 residents.
Figure 2.7 portrays projected employment growth between 2000 and 2030. NIPC projects that the corridor will experience a 20 percent employment growth between 2000 and 2030, with most growth (96,000 new jobs) also occurring in the far-western portion of the corridor.

Sixty one percent of the corridor residents are non-Hispanic White, 17 percent are African American, and fewer than 10 percent are Hispanic. However, the racial profile varies across the corridor particularly among the Cook County communities. While Non-Hispanic Whites make up almost 80 percent of population in the majority of the corridor, the northeastern-most area of the corridor is over 70 percent African-American and the southeastern-most area is racially balanced among African-Americans and Hispanic and non-Hispanic Whites.

In the year 2000, twenty-four percent of the corridor population was age 16 or younger and 11% were age 65 or older. With children and seniors representing over one-third of the corridor population, the unique transportation needs of these segments will need to be carefully considered.

Finally, the automobile ownership in the corridor is high overall with the exception of districts closer to Chicago where up to 20 percent of households do not own an automobile and have a greater reliance on public transportation.
3.0 Transportation Needs in the Cook-DuPage Corridor

The Cook-DuPage Corridor generates a significant share of the region's travel and its transportation system provides key linkages between DuPage county, the western communities of Cook county and the city of Chicago. Additionally, the 51 corridor municipalities include a number of major activity centers that attract workers from throughout northeastern Illinois. Not counting pass-through trips, the corridor's existing highway and transit network, substantially unchanged over four decades, bears nearly 4 million trips per day. However, since 1970, corridor population has increased by 20% to 1.1 million in 2000 and employment has doubled to nearly 750,000 over the same period. With sustained population and economic expansions underway in western DuPage, Kane and Will counties, the important role of transportation at the region's center will likely continue.

3.1 Transportation Needs by Travel Market

The Cook-DuPage Travel Market Analysis identified nine distinct travel markets that represent the corridor's most significant travel patterns from the 2000 Census Journey-to-Work database:

- The Traditional Commute market, from suburban origins to Chicago destinations;
- The Reverse Commute market, from Chicago origins to suburban destinations; and
- Seven distinct Intersuburban Commute travel markets, reflecting the varied and complex suburb-to-suburb work travel patterns of the corridor.
Each of these travel patterns constitutes a unique, corridor-level travel market as shown in Figure 3.1. These travel markets vary in size, geography and mobility. Together, they comprise over one million daily work trips that largely occur during the morning and evening peak periods. The Traditional and Reverse Commute travel markets are the largest travel markets in the Cook-DuPage corridor with over 200,000 and 120,000 daily round trip work trips respectively. Intersuburban travel is the predominate type of commute in the corridor, but individual markets are generally smaller than 25,000 daily round trip work trips. Two notable exceptions are the East Central DuPage travel market with over 56,000 round-trips in a north-south direction in eastern DuPage and the Central DuPage travel market with almost 35,000 round trips originating in southwest DuPage, northwest Will and southeast Kane county and destined to east-central DuPage.

Detailed analysis of the nine travel patterns and the transportation services available to each indicate that the most pronounced mobility needs of the Cook DuPage Corridor are:

(a) Access by transit to major employment centers in DuPage and West Cook;
(b) Service quality of I-290;
(c) Service quality of bus transit in terms of efficiency and convenience, especially for trips in Cook County requiring connecting CTA and Pace services; and
(d) Service quality of arterials.

Figure 3.1: Cook-DuPage Corridor Travel Markets, 2000

A number of major employment destinations are unreachable by transit for many residents of the corridor and the city of Chicago. While CTA and Pace bus coverage within central Cook county is generally high for many travelers, the utility of this transit option is diminished by operating boundaries, different service frequencies and inconvenient schedules. Performance of the highway network has been similarly impacted by shifts in corridor commuting patterns over time. Persistent congestion on I-290 in both directions impedes pass-through traffic and a number of corridor travel markets. Congestion on I-290 further degrades vehicle travel including bus transit on arterials that are used as an alternative to...
I-290 during peak periods. Also, closely spaced traffic signals and stop signs on key arterials prevail in the denser Chicago and central Cook county sections of the corridor. This intensely urban landscape which includes on-street parking, congested cross-streets and numerous curb-cuts combine to cause high travel times for bus, automobile and commercial traffic during peak travel periods. Similarly, at-grade rail/highway crossings and conflicting signal timings contribute to poor traffic flow on arterials in the Cook county portions of the corridor. Travel in the DuPage county sections of the corridor is restricted by high traffic volumes and discontinuous north-south arterials.

3.1.1 Traditional Commute

Traditional commute travelers in the Cook-DuPage Corridor benefit from a range of highway and transit options that vary significantly depending on their exact origin and destination within the corridor. Traditional commuters benefit from the historic development of Chicago’s regional transportation infrastructure - - a system designed to facilitate travel into the heart of the region. Commuters east of Harlem Avenue have the most expansive set of travel options including a network of arterial roadways, the Eisenhower Expressway, commuter rail and rapid transit service, and bus routes serving their final destinations. Commuters from the west Cook county suburbs (between Harlem Avenue and the Cook/DuPage county border) lack CTA rapid transit and have a lower level of Metra commuter rail service than commuters originating in the DuPage districts. Further, a lower level of bus service is available in this area, but is more extensive here than in DuPage county. Commuters whose trips originate further west in DuPage county experience a higher level of commuter rail service while having no direct bus options. The transit options serving the traditional commute are quite reasonable, especially for trips destined to the central area in Chicago. Travel by transit from the suburbs to areas of Chicago outside the central area can be more difficult since many trips potentially require at least one transfer.

The greatest mobility problem of the traditional commute travel market is the severe and recurring congestion on the Eisenhower Expressway (I-290) for prolonged periods in the traditional commute direction. This poses a particular problem for workers whose jobs or personal/family responsibilities require use of an automobile for their commute. Further, the arterial roadways do not adequately serve as an alternative to the Eisenhower for longer distance trips. The closely spaced signals, lower posted speed limits and sporadic congestion limit their usefulness primarily to shorter distance commute trips. The traditional commute travel market is expected to grow by 18 percent through 2030. As a result, existing levels of both transit and highway use are expected to continue into the future, along with an associated negative impact on the mobility for those who rely on the Eisenhower for a significant portion of their work trip.

At least one transit option is currently available to nearly all origins and destinations of the traditional commute travel market and is currently relied upon by the majority of this travel market. The level of rail and bus service available for the traditional market is the highest among all other markets in the corridor. However, a number of transit options could also be considered to improve the mobility of traditional market commuters, particularly to non-CBD destinations in Chicago.

3.1.2. Reverse Commute

The reverse commute market is comprised almost entirely of city of Chicago residents, who have the lowest rate of automobile ownership in the region. This characteristic influences the pattern of work destinations of this travel market and further illuminates the importance of non-automobile options to ensure access to reverse commute
destinations. Lack of transit options and recurrent congestion on the Eisenhower Expressway (I-290) are the most significant mobility problems of the reverse commute travel market. This is especially true for longer distance reverse commute trips to west suburban Cook, DuPage and Kane counties, which collectively constitute 50 percent of the reverse commute travel market. Many reverse commute trips with both origins and destinations within the city of Chicago do have more than one transit option, including the many trips destined for O'Hare International Airport and the Midway Airport area. Also, a limited number of reverse commute destinations are reachable directly by Metra commuter rail from Union Station or Ogilvie Transportation Center in downtown Chicago, or with a transfer downtown from other areas of the city. For many of the more distant work trips, there are few westbound commuter rail access opportunities in Chicago and connecting bus service in west Cook county or DuPage county is very limited. Also, there is no direct transit option for reaching the high concentration of work destinations that are located along Cermak Road and the I-88 corridor, from approximately 1st Avenue in Maywood (including the Loyola University Medical Center) to Winfield Road in Warrenville (including Cantera). For these more distant trips, expressway travel is the only viable option since arterials are heavily signalized with low speed limits resulting in long travel times and limiting their utility mostly to short distance trips. However, congestion on the Eisenhower is severe in the reverse commute direction during both the morning and afternoon peak periods, particularly between Central Avenue and Mannheim Road.

The reverse commute travel market is projected to grow by 18 percent through 2030. The existing level of congestion on I-290 is expected to continue, as will the negative impact on the mobility on the reverse commute travel market. Developing suitable transit options would likely have the dual effect of increasing the future growth of the reverse commute market by increasing the accessibility of jobs in DuPage county, and reducing the congestion on the Eisenhower by providing an alternative mobility option to a quite sizeable travel market.

3.1.3. Central DuPage

The mobility of the Central DuPage travel market suffers from a very limited set of increasingly congested roadways, and little or no viable transit. This travel market is expected to grow by 22 percent by the year 2030, while the Far West DuPage travel market, which relies on many of the same transportation facilities, is expected to grow by 61 percent. Both travel markets are facing significant future decline in mobility. Roadway enhancements such as capacity improvements and more intensive traffic management strategies could improve mobility for this travel market and may be the only improvement suitable to the relatively dispersed, but growing number of origins from Kane and Will counties. Other travelers relying on the same key elements of the roadway system for both work and non-work travel would benefit from roadway enhancements, as well. For the Central DuPage travel market, the key arterials that are most critical to focus upon include Roosevelt Road, Butterfield Road/ 22nd Street, Ogden Avenue/Oswego Road (U.S. 34), and IL 53.

3.1.4. South Central Cook

The mobility of the South Central Cook travel market is most impaired by having only a small number of bus routes and long transit travel times relative to distance traveled when a transfer is required. While arterials provide direct connectivity between nearly all origins and destinations of the South Central Cook travel market, only three bus routes serve this travel market. Further, there are no transit options south of Cermak Road. Given that residents have relatively high rates of zero-automobile households, the low availability and time-disadvantages of transit are considerable problems.
Congestion on the Eisenhower Expressway (I-290) during peak periods decreases the attractiveness of this option for most automobile trips made by this travel market and likewise decreases the attractiveness of the DuPage Connector - a non-stop express bus route that operates on I-290 between Forest Park and Oak Brook. The mobility of the South Central Cook travel market could be most improved by increasing transit options and reducing travel times for existing transit services.

3.1.5 East Central DuPage

Congestion on north-south roadways and lack of transit options are the most significant mobility problems of the East-Central DuPage travel market. Travel forecasts indicate that northbound work travel will increase 27 percent by 2030. This growth in travel will increase congestion on IL 53, I-355, and IL 83 within the East-Central DuPage market area. Although the I-355 extension (between I-55 and I-80) is not within this market area, the resulting pass-through traffic is likely to add to congestion within this travel market and to further impede the mobility of the East-Central DuPage travel market. There are no transit options for the vast majority of work trips to provide an alternative mobility option for this travel market.

3.1.6. Far West DuPage

The Far West DuPage travel market is a geographically large travel market that is served by relatively few north-south and east-west roadways. Options are very limited due to the lack of north-south expressways and rail service, and the current objective of existing bus service to serve primarily the traditional commute. There are no attractive transit options available to the Far West DuPage travel market. Yet with a projected growth of 61 percent, this is the fastest growing intersuburban travel market affecting the Cook-DuPage Corridor. The destinations of the Far West DuPage travel market are largely concentrated so as to result in reliance upon many of the same transportation facilities as the Central DuPage travel market (Travel Market 3), which is anticipated to grow by 21 percent by the year 2030. Both travel markets are currently facing a significant future decline in mobility. The impact of anticipated growth in work trips and non-work trips on the transportation system will be dire if options aren't developed in the near future. While providing adequate mobility today, capacity enhancement on the following roads will likely be necessary to sustain the mobility of this travel market: Eola Road, Schmale Road/Naperville Road/Naper Boulevard and Ogden Avenue (U.S. 34). Congestion mitigation efforts are currently needed for IL 59 and Washington Street. A critical mobility need of this travel market is to provide transit options in south DuPage and Will county to destinations in downtown Naperville, along Ogden Avenue and to the many destinations along Ferry/Warrenville and Diehl Road.

3.1.7 North DuPage

Congestion on east-west arterials is of growing concern and transit options are very limited and do not connect the major work trip origins and destinations of this travel market. The mobility of the North DuPage travel market relies almost exclusively on numerous east-west and north-south arterials that form an interconnected, but widely spaced grid network, along with the Elgin-O'Hare Expressway. Many of the key arterial roadways also serve substantial freight traffic due to concentrations of light manufacturing and distribution facilities in this market. Work travel in this market is expected to grow significantly, with a projected 42% increase by 2030. The concentration of trip destination densities is projected to become much stronger particularly for destinations along Thorndale Avenue west of O'Hare Airport.
Given the short distance nature of most North DuPage work trips, roadway enhancements would most improve the current mobility of this travel market. Developing transit service that is appropriate to the overlapping short distance travel patterns of this market could further enhance mobility by providing an alternative to the automobile.

3.1.8 North Central Cook

A full range of transportation options including arterial, expressway and bus and rail transit options is available to commuters in the North-Central Cook travel market. There are several alternatives within the arterial and bus transit options as well as several bus-rail combinations. Congestion is so severe on the Eisenhower Expressway in this market area, that this is the only travel market where the expressway option is not desirable. With the exception of North Avenue (IL 64) arterials are limited in capacity and do not utilize effective traffic control techniques. Although grid arterial networks are often assumed to offer a high level of mobility to automobiles and buses, the mobility offered by some key arterials in this travel market is significantly compromised by intersecting freight and commuter rail traffic. Given the projected 26 percent growth in the North-Central Cook market by 2030, it is expected that existing mobility problems will remain and gradually get worse.

3.1.9 West Central Cook

The West-Central Cook travel market has a strong network of arterial roadways that provides excellent connectivity between origins and destinations. This travel market also has a bus transit option that provides nearly complete coverage of the arterial network, appropriate to the relatively intense, dispersed and short-distance travel patterns of this market. Only a small portion of the travel market relies on bus service for work trips relative to the amount of service provided and to the relatively high percent of zero-automobile households in this travel market. This likely reflects shortcomings in the service in this travel market that prevent the bus transit option from being more relied upon. Bus transit may not provide a feasible option for major West-Central Cook employment centers with round the clock and/or weekend shifts, including O'Hare, LUMC/Hines VA hospitals, Gottlieb Memorial Hospital, MacNeal Hospital, Morton College, and Triton College. Nearly all of these major employers are within the Pace service area, which provides less frequent and more limited hours of service than CTA bus transit. In addition, bus transit to jobs at Midway Airport requires West-Central Cook southbound commuters at least one, and in some cases, two inconvenient transfers in the same direction of travel due to CTA's segmentation of this bus route.

3.2 Transportation Needs by Mode

3.2.1 Highways and Arterials

Of the various transportation system elements, arterial roadways are most heavily relied upon to provide mobility by the corridor’s travel markets. The following major east-west arterials serve multiple travel markets including the Traditional and Reverse travel markets, as well as three or more Intersuburban travel markets:

- North Avenue (IL 64)
- Roosevelt Road (IL 38)
- IL 56/22nd Street/Cermak Road
Similarly, expressways emerge as a key transportation system element in nearly all travel markets; the two notable exceptions are the Far West DuPage (Travel Market 6) and the West Central Cook travel market (Travel Market 9) that have north-south directionality and are not traversed by a north-south expressway.

Performance of the highway network has been adversely impacted by shifts in corridor commuting patterns over time. Persistent congestion on I-290 in both directions impedes pass-through traffic and a number of corridor travel markets. Congestion on I-290 further degrades vehicle travel including bus transit on arterials that are used as an alternative to I-290 during peak periods. Also, closely spaced traffic signals and stop signs on key arterials prevail in the denser Chicago and central Cook county sections of the corridor. This intensely urban landscape which includes on-street parking, congested cross-streets and numerous curb-cuts combine to cause high travel times for bus, automobile and commercial traffic during peak travel periods. Similarly, at-grade rail/highway crossings and conflicting signal timings contribute to poor traffic flow on arterials in the Cook county portions of the corridor. Travel in the DuPage county sections of the corridor is restricted by high traffic volumes and discontinuous north-south arterials.

3.2.2 Transit (Bus and Rail)

The commuter rail and rapid transit systems are primarily relied upon to provide mobility for the Traditional commute travel market; and are potentially available but much less effective at serving Reverse and Intersuburban travel. Key system elements for the corridor are Metra’s Milwaukee District West Line, Union Pacific West Line and Burlington Northern Santa-Fe; and the CTA’s Green Line and Blue Line.

City and suburban bus service are key elements for both the Traditional and Reverse travel markets. There is a fairly extensive network of bus service available for Intersuburban travel in the markets that span the far west and northwest sides of Chicago and the western suburbs of Cook county, particularly for trips made east of Harlem Avenue; however, bus is relied upon by a fairly small percent of these markets for their daily commute. Bus transit is not widely available in the DuPage portion of the corridor as an option for travel.

Transit is well optimized for the majority of traditional commute trips since these trips correspond to the historical suburbs-to-Chicago journey to work. However, for the more recent intersuburban and reverse commute trip patterns, a different picture emerges. A number of major employment destinations are unreachable by transit for many residents of the corridor and Chicago: 1) Ferry Road, Warrenville Road, Diehl Road and Butterfield Road, from IL 59 to IL 53, in Warrenville, Naperville and Lisle; 2) 22nd Street/ Butterfield Road between Yorktown in Lombard and Oak Brook, 3) between North Avenue and Lake Street, in Addison and Elmhurst, 4) the Thorndale Avenue Corridor in Wood Dale and Itasca, 5) along IL 53/I-355/I-290 Extension in Schaumburg and 6) Loyola University Medical Center/Hines VA Hospital in Maywood. While CTA and Pace bus coverage within central Cook county is generally high for many travelers, the utility of this transit option is diminished by operating boundaries, different service frequencies and inconvenient schedules. In addition, several key north-south CTA routes are segmented, requiring one or two transfers in the same direction despite a single provider.
4.0 Corridor Mobility Issues

Transportation facilities and services are extensive in the eastern portion of the Cook-DuPage Corridor, where population density is also greatest. This is due in large part to the radial orientation of expressways and rail lines, coupled with the urbanization and settlement patterns that also "radiate-out" from the Chicago central area. However, over the past twenty years, population and employment have greatly increased in the corridor, particularly within DuPage county. Growth forecasts indicate that this trend will continue, with employment growth projected to outpace the growth in population. Neighboring Will and Kane counties are expected to develop rapidly in the future, although primarily in terms of population. The currently predominant northbound flow of travel through the corridor, and the predominant eastbound flow within the DuPage portion of the corridor, will likely increase significantly as the corridor increasingly becomes a key employment center for residents of the surrounding counties. The development of the region’s transportation system has not kept pace with the changing travel patterns and trends, with the notable exception of the tollway system and to a lesser extent, the regional arterial network. It is critical to identify where and what kind of transportation improvements will best sustain the mobility of the Cook-DuPage Corridor and surrounding areas into the future.

The mobility issues of the corridor’s nine travel markets were assessed both independently and collectively, in a regional context. Origin-destination based travel patterns, the availability of highway facilities and transit services, and the level and quality of service offered by different modes indicate that the most significant mobility issues affecting the Cook-DuPage Corridor are:

Access by transit to major employment centers. Transit currently is not an option for nearly all Intersuburban and Reverse Commute trips to and within DuPage. Major employment destinations that are largely inaccessible by transit include:

- Ferry Road, Diehl Road, Warrenville Road and Butterfield Road from IL 59 to IL 53, in Warrenville, Naperville and Lisle;
- Butterfield Road/22nd Street between Lombard (Yorktown) and Oak Brook;
- The area between North Avenue and Lake Street in Addison and Elmhurst;
- The Thorndale Avenue Corridor in Wood Dale and Itasca;
- Areas along the IL 53/I-290 Extension in Schaumburg; and
- The Loyola University Medical Center/Hines VA Hospital in Maywood.

Service quality of I-290. Persistent congestion in both directions on I-290 is a regional and corridor concern both caused by, and negatively impacting, pass-through travel and the Traditional, Reverse, South Central Cook, North Central Cook, and West Central Cook travel markets. Congestion on I-290 further exacerbates the poor traffic flow on arterials that are used either routinely or incidentally as an alternative to I-290 during peak periods. The efficiency of travel for automobiles, buses and commercial vehicles are all negatively impacted by the high level of congestion on I-290.

Service quality of bus transit. Many corridor commute trips within or through Cook county require use of both CTA and Pace services to undertake the trip by bus. From a user perspective, CTA/Pace service boundaries within Cook county result in inconsistent
frequencies and hours of service, same direction transfers, and poorly timed (uncoordinated) transfers. In addition, a few key north-south routes have been inconveniently segmented, requiring one or two transfers in the same direction despite a single provider.

Service quality of arterials. Poor arterial traffic flow affects bus, automobile and commercial traffic. Stop-and-go travel due to closely spaced traffic signals and stop signs on key arterials, particularly in Chicago and central Cook county, lead to high travel times for commuters during peak hours. The inefficient stop-and-go traffic flow is further exacerbated by on-street parking and vehicle turning movements into/out of driveways. At-grade rail/highway crossings and conflicting (uncoordinated) traffic signal timing contribute to poor traffic flow particularly on arterials in Cook county. Meanwhile, travel on arterials in the DuPage county sections of the corridor is mainly restricted by high traffic volumes and relatively few continuous arterials due to the dissolution of the urban arterial grid. The arterial grid is least present/least dense in the western half of DuPage county, where the corridor’s highest population and employment growth rates are predicted for the year 2030.

The above four major corridor mobility issues warrant a coordinated, multimodal approach by regional planning bodies, local officials and transportation service providers in developing potential solutions. There is a critical need to focus upon intersuburban and reverse commute access to major employment centers of the Cook-DuPage travel markets in developing potential major transportation investments in the Cook-DuPage Corridor, particularly to major employment centers. Reducing congestion on I-290 is a second important corridor and regional issue that would necessitate a major investment in order to solve particularly in conjunction with developing potential new transit and multimodal options to serve work trips to major corridor employment centers.

At the same time, a system-wide approach to addressing traffic flow problems and transit coordination issues is critical to affect a meaningful level of improvement. Any new Corridor transportation investment proposal considered should strive to improve (and at a minimum, maintain) the current levels of bus and arterial service quality.

5.0 Goals and Objectives

Goals and objectives articulate the desired end-state and are the basis for evaluation measures that assess how well potential transportation system improvement options address corridor mobility needs. The following goals and objectives will serve as direction setting principles for the development and evaluation of transportation options, and will be taken collectively in the development and consideration of options.

<table>
<thead>
<tr>
<th>GOALS AND OBJECTIVES FOR CORRIDOR MOBILITY OPTIONS</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Goals</td>
<td>Objectives</td>
</tr>
<tr>
<td>Goal 1. Increase Availability and Efficiency of Transit for Reverse Commuters to Major Suburban Employment Centers</td>
<td>Objective 1. Increase transit access to identified Corridor employment centers for current and future Reverse commuters.</td>
</tr>
<tr>
<td></td>
<td>Objective 2. Increase access to additional potential places of employment.</td>
</tr>
<tr>
<td></td>
<td>Objective 3. Increase connectivity between employment centers and residential locations of significant existing and future origin density.</td>
</tr>
<tr>
<td></td>
<td>Objective 4. Increase opportunity to serve multiple or overlapping Corridor travel markets.</td>
</tr>
<tr>
<td></td>
<td>Objective 5. Increase opportunity to serve other work-related and non-work trips.</td>
</tr>
<tr>
<td></td>
<td>Objective 6. Increase benefit to users of existing multimodal transportation system.</td>
</tr>
<tr>
<td></td>
<td>Objective 7. Reduce the number of transfers.</td>
</tr>
<tr>
<td>Goals</td>
<td>Objectives</td>
</tr>
<tr>
<td>-------</td>
<td>------------</td>
</tr>
<tr>
<td>Objective 1. Increase transit access to identified Corridor employment centers for current and future the commuters of Intersuburban travel markets.</td>
<td></td>
</tr>
<tr>
<td>Objective 2. Increase access to additional potential places of employment.</td>
<td></td>
</tr>
<tr>
<td>Objective 3. Increase connectivity between employment centers and residential locations of significant existing and future origin density.</td>
<td></td>
</tr>
<tr>
<td>Objective 4. Increase opportunity to serve multiple or overlapping Corridor travel markets.</td>
<td></td>
</tr>
<tr>
<td>Objective 5. Increase opportunity to serve other work-related and non-work trips.</td>
<td></td>
</tr>
<tr>
<td>Objective 6. Increase benefit to users of existing multimodal transportation system.</td>
<td></td>
</tr>
<tr>
<td>Objective 7. Reduce the number of transfers.</td>
<td></td>
</tr>
</tbody>
</table>

| Goal 2 | Increase Availability and Efficiency of Transit for Intersuburban Commuters to Major Suburban Employment Centers |
| Objective 1. Reduce travel times on I-290 (eastbound and westbound) for auto and transit users. |
| Objective 2. Reduce travel times on other key transportation system elements (facilities and services) relied upon by Intersuburban and Reverse commuters. |
| Objective 3. Reduce adverse impacts on users of the existing multimodal transportation system. |
| Objective 4. Reduce travel times for multi-modal/multi-vehicle trips. |
| Objective 5. Increase use of traffic/transportation management techniques and technology strategies. |
| Objective 6. Improve travel experience and safety of transportation system users. |

| Goal 3 | Improve Roadway and Transit Service Quality in I-290 Travel Corridor |
| Objective 1. Reduce adverse impacts on and promote positive benefits to existing communities, neighborhoods and people. |
| Objective 2. Enhance economic development/redevelopment opportunities. |
| Objective 3. Consider extent of and minimize adverse impacts of land acquisition. |
| Objective 4. Maximize achievement of Corridor Planning Standards (supplemental criteria that reflect shared local values and preferences). |

| Goal 4 | Increase Community and Corridor Benefits |
| Objective 1. Increase use of and integration with regional transportation system. |
| Objective 2. Ensure consistency with regional goals presented in the 2030 RTP and 2040 Regional Framework Plan. |
| Objective 3. Reduce negative impacts on environmental justice communities/populations. |
| Objective 4. Increase access to disadvantaged communities/populations. |

| Goal 5 | Increase Regional Benefits |
| Objective 1. Ensure all applicable air quality standards are met. |
| Objective 2. Avoid / reduce adverse impacts to wetlands, floodplains, and critical habitats. |
| Objective 3. Reduce operating noise and vibration levels. |
| Objective 4. Avoid / reduce adverse impacts to sensitive land uses, historic properties and open space. |

| Goal 6 | Reduce Adverse Environmental Impacts |
| Objective 1. Increase system value by balancing costs and benefits. |
| Objective 2. Reduce construction costs. |
| Objective 3. Reduce long term operating costs. |
| Objective 4. Increase potential benefits. |
| Objective 5. Increase compatibility with and capacity of existing, local, state, and federal funding sources for both capital and operating costs. |

Table 5.1: Goals and Objectives for Mobility Options
6.0 Conclusion

This preliminary statement of purpose and need has been developed early in the corridor planning process. It establishes the problems to be addressed, the goals and objectives for which transportation improvement options will be developed and the framework through which potential solutions will be evaluated and compared. This document describes the major travel markets of the Cook DuPage Corridor, the transportation system that exists today to serve the current travel patterns, and future growth projections developed by the Chicago Area Transportation Study and the Northeastern Illinois Planning Commission.

With this document, the RTA presents a shared understanding of the need for potential major investment(s) in the Cook DuPage Corridor and the intended purpose for which alternative improvement options - including both capital and non-capital improvements – are to be developed as part of this study. This document can further serve as a foundation for, but it is not intended to serve as, a formal State of Purpose and Need required by the National Environmental Policy Act (NEPA) as part of a draft environmental impact statement for a specific, proposed action.

This preliminary statement of purpose and need enables the Regional Transportation Authority (RTA) and the many participants in this planning process to incorporate community, corridor and regional considerations into the development of potential transportation improvement options. It provides the basis for 1) developing and evaluating alternative options to address the unmet mobility needs of intersuburban and reverse commuters in the Cook DuPage Corridor, and 2) decision making in the Options Feasibility study phase regarding recommended actions to be carried forward for further study.

This statement of purpose and need for Cook DuPage Corridor mobility improvements is preliminary. The RTA encourages an open dialogue and anticipates revising this document with the insights of citizens, local officials and transportation professionals, as well as our continued learning from the corridor planning process.